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Abstract. In pure object-oriented languages like Smalltalk or Java, sharing a
method between a set of unrelated objects requires the use of either inheritance
or composition mechanisms. These two solutions can be problematic and
cumbersome. Using inheritance, shared methods must be stored in a common
ancestor, implying the use of multi-inheritance or, in single-inheritance
systems, root objects with large collections of methods and complex interfaces.
The use of instance variables to implement composition implies a level of
indirection with the consequent need of glue code whenever we need to add the
composed object methods to the container’s interface. Logtalk, a Prolog object-
oriented extension, features categories as a new composition mechanism that
solves these problems. Categories complement instance variable based
composition and provide alternative solutions to multi-inheritance designs for
single inheritance languages. Categories also provide several developing
benefits such as incremental compilation and splitting of complex objects into
more manageable and reusable components.

1 Introduction

Sometimes we want to define and reuse a set of methods and variables that, even if
functionally cohesive, do not fit the notion of an object and only make sense when
composed with other code to construct new objects. Take for example the Smalltalk
[1] dependency mechanism that enables an object to notify a set of dependent objects
of the occurrence of some relevant event. We may need this mechanism for some of
our objects but certainly not for all. In Smalltalk, this is an all–or–nothing preposition.
For example, in VisualWorks [2, 3] the code is contained in a parcel and is an
optional feature that one can load/add to the base system. The dependent methods
(and associated data structures) are always added to the root class, Object, making
them available for all objects. We either have dependents support for all objects or for
none. In other systems where the dependency code is included by default, it is also
stored in the root class Object. There are two issues here: how do we encapsulate and
how do we reuse such a set of methods? We seek a solution that enables us to add the
methods that we want to reuse to the interface of only those objects that will use them,
and at the same level as the object’s locally defined methods. In hybrid languages like
C++ [4], we can always write generic code like utility functions without encapsulating



them inside objects. However, in pure object-oriented languages like Smalltalk or
Java [5], all the code that we write must be encapsulated in some object. Sharing a
method among a set of unrelated objects requires then the use of either inheritance or
composition mechanisms.

1.1 Reuse via Inheritance

Using inheritance, shared methods must be stored in a common ancestor. If the
chosen language supports multi-inheritance, we can encapsulate our methods in a
parent class for of all the objects that need to inherit such methods. Implementation
multi-inheritance usually causes no problem for independent sets of cohesive methods
and variables. However, languages like Smalltalk only support single-inheritance1 and
others like Objective-C [6, 7] or Java only supports multi-inheritance of protocols or
interfaces. Without stepping into the single- versus multi-inheritance controversy [8],
we need a solution that can be adopted in single-inheritance languages like Smalltalk
or Java.

With single-inheritance, shared methods must be added to some common ancestor
object. The outcome is often root objects with large collections of methods and
complex interfaces, despite the fact that most descendant objects never use most of
the methods [9]. For example, the root class of VisualWorks 3.0 has 94 methods in 25
categories while Squeak 2.5 [10, 11], another Smalltalk system, has 96 methods in
nine categories. The numbers for Java and Objective-C are better. In Java 1.2 [12] we
have 12 methods in class Object but 35 methods in class Class (the root of the
instantiation graph). In Apple’s Objective-C frameworks [13] we have 38 instance
and class methods in the root class NSObject. Single-inheritance may also force
hierarchy relations that do not reflect the application domain but are rather
workarounds for language limitations [14], although the problem can be mitigated by
multi-inheritance of interfaces or protocols.

1.2 Reuse via Instance-Based Composition

Common object-oriented languages like Smalltalk, Objective-C, Java, or C++ lack
native support for composition at the same level as inheritance. The customary
solution to implement composition is to use an instance variable to hold a reference to
an instance of the class that contains the methods we need to reuse. This implies a
level of indirection when we want to add the composed object methods to the
container’s interface, with the consequent need of cumbersome glue code and some
performance penalties. In addition, updating the composed object will not
automatically update the container object’s interface. Note that these drawbacks of
what we call instance-based composition result from our need of a different kind of
composition solution, not from any inherent problem of this reusing method.
                                                                        
1 There are however some research Smalltalk systems that support multi-inheritance.



1.3 Reuse via Category-Based Composition

In this paper, we present the category concept, a new composition mechanism, as a
possible solution for these problems, especially in the context of single-inheritance
languages. Categories are implemented in the Logtalk 2.x system [15, 16, 17], an
object-oriented extension to the programming language Prolog [18]. First, we start
with a brief description of the Logtalk system. Second, we describe the category
concept, its roots and its implementation in Logtalk, comparing it to related work.
Third, several examples are presented. Last, we conclude by summarizing some cases
where categories can be a useful tool and discuss some possible extensions of the
category concept.

2 The Logtalk System

Logtalk 2.x is an Open Source [19] object-oriented extension to Prolog consisting of a
pre-processor and a runtime engine. The pre-processor compiles Logtalk source files
to Prolog code that is then compiled by the chosen Prolog compiler. Logtalk is a
neutral object-oriented language, supporting both prototypes and classes in the same
application. We can have any number of object hierarchies, including reflective
designs, and freely exchange messages between any kind of objects. Logtalk supports
separation of interface from implementation through the definition of protocols
(similar to Objective-C protocols or Java interfaces), that can be implemented by
either prototypes or classes. Data hiding is ensured by the implementation of public,
protected, and private inheritance along with public, protected, and private predicates.
Multiple inheritance is supported for both protocol and implementation. Other major
features include parametric objects; event-driven programming; instance-defined
methods; dynamic binding; static and dynamic predicates; automatic generation of
documentation files in XML format; and categories, the subject of this paper. Logtalk
is compatible with any operating system running a Prolog compiler complying with
the Prolog ISO Standard [20]. It currently includes configuration files for nineteen
commercial and academic Prolog compilers. Logtalk 1.0 has released in February 17,
1995, while the first public (non-beta) 2.x version has been released in February 9,
19992. The current distribution includes a standard library, several examples, user and
reference manuals, and a programming tutorial. Logtalk users are developing
applications ranging from power network fault diagnosis [21] to multi-agents systems,
web interfaces, expert systems, OODBMS prototypes, CAD systems, and several
academic research projects on OOP [22] and knowledge representation languages
[23]. Logtalk is also being used to teach object-oriented programming to

                                                                        
2 Although the two systems share the same name and broad concepts, they are not

compatible and are designed with different sets of goals.



undergraduate students. As a Prolog extension, Logtalk can be used as an interpreted,
interactive, object-oriented programming language.

Using Logtalk/Prolog as a research tool in object-oriented programming has
several advantages but also some drawbacks. Prolog provides an excellent tool for
prototyping new ideas in object-orientation, testified by the amount of research being
done in object-oriented logic programming systems [24, 25]. Code can be interpreted
either as procedures or as data, enabling easy meta-programming. Interactive
programming environments allow quick prototyping of new ideas. However, because
Prolog is a logic programming language, it also implies an additional effort when
translating Logtalk concepts and ideas to the more common jargon of languages like
Smalltalk, C++ or Java. Prolog programs are made of predicate directives and
definitions. Predicate definitions describe what we know to be true about the
application domain. Indeed, Prolog programs can be seen as executable specifications.
Predicate directives describe predicate properties, determining how predicate
definitions are compiled. For those not familiar with logic programming and Prolog in
particular, in this paper we may equate Prolog/Logtalk predicates with C++ object
members. That is, predicates can play the role of both methods and variables. Mutable
state is usually represented by dynamic predicates, i.e. predicates whose definition
may be changed during runtime.

2.1 Logtalk Basics

One of the Logtalk main goals is to provide Prolog with predicate encapsulation
capabilities. In particular, Logtalk objects must be able to supersede the current
features of the current Prolog module system [26]. To ensure a smooth learning curve,
Logtalk uses standard Prolog syntax with the addition of a few directives and message
sending operators. The simplest example of a Logtalk object will be something like:

:- object(foo).

:- public(bar/1).

bar(1).
bar(2).

:- end_object.

The first argument of the opening directive is the object identifier. By default, all
object predicates are private. We use the public/1 directive to declare public
predicates. This is an example of a one-of-a-kind object. It does not belong to any
object hierarchy or have any dependencies on other objects, categories, or protocols.
We can put this object definition on a source file or create the object dynamically at
runtime using the Logtalk built-in predicate create_object/4:

| ?- create_object(foo, [], [public(bar/1)], [bar(1), bar(2)]).



Either way, after compiling and loading the object or after creating it dynamically, we
can try queries like:

| ?- foo::bar(X).

X = 1 ;
X = 2 ;
no (more) solutions

The ::/2 infix operator used above is our message sending operator. There are also
complementary syntax constructs allowing us to send a set of messages to an object or
the same message to a set of objects in a compact way.

Objects can also be defined by extending other objects, resulting in a prototype
hierarchy. For example:

:- object(bar,
extends(foo)).

bar(X) :-
^^bar(X).

bar(3).
bar(4).

:- end_object.

The ^^/1 prefix operator enables us to call inherited definitions when redefining a
predicate (similar to the Smalltalk super call):

| ?- bar::bar(X).

X = 1 ;
X = 2 ;
X = 3 ;
X = 4 ;
no (more) solutions

Objects may also instantiate and/or specialize other objects, defining typical class-
based hierarchies, with or without metaclasses. For example:

:- object(polygon,
instantiates(metaclass),
specializes(object)).

:- public(area/1).
:- public(perimeter/1).
...



perimeter(P) :-
::nsides(N),
::slength(L),
P is N*L.

...

:- end_object.

The ::/1 prefix operator allow the sending of messages to self, that is, to the object
that received the original message.

Predicate declarations can be contained inside objects or in independently defined
protocols:

:- protocol(polygon_interface).

:- public(area/1).
:- public(perimeter/1).
...

:- end_object.

We can then rewrite the example above as:

:- object(polygon,
implements(polygon_interface),
instantiates(metaclass),
specializes(object)).

...

:- end_object.

By default, inheritance is public. We can however restrict the scope of inherited
predicates by prefixing the name of the instantiated, specialized, or extended object or
the name of the implemented protocol with the keywords public, protected or
private. For example:

:- object(stack,
implements(public::stack_protocol),
extends(protected::list)).

...

:- end_object.

This feature works similar to C++ restricted inheritance. Dynamic state can be
represented by dynamic predicates, that is, predicates whose definition can be



changed at runtime. Logtalk dynamic predicates can thus play the role of object
variables in languages like C++ or Java. Instead of an assignment primitive, Logtalk
defines a set of built-in methods that allow us to assert and retract clauses for dynamic
predicates. Being methods, they always modify the predicate definition contained in
the target of the assert/retract message, as long as the predicate is within the scope of
the object that sends the corresponding message. For instance, assume that we add the
following directive to our first example:

:- dynamic(bar/1).

If our code contains a call such as:

..., ::assertz(bar(5)), ...

This message will assert a new clause as the last one for the predicate bar/1 in self.
Assignment can be performed by first retracting all predicate clauses and then
asserting the new definition:

...,
::retractall(bar(_)),
::assertz(bar(5)),
...,

Logtalk assert and retract built-in methods make features likes Smalltalk class
variables trivial to implement. For further reading regarding Logtalk syntax,
semantics, and remaining features please see [17]. Better yet, download the system
from [16] and play with the included examples.

2.2 Logtalk Programming versus Traditional Object-Oriented Programming

Logtalk extends Prolog to objects, in a similar way as CLOS extends LISP or
Objective-C extends C. There are however three significant differences. The first
concerns the predicate notion that is inherited from Prolog. Predicates remove the
dichotomy between state and behavior. A predicate states what is true about a domain.
We can use it to represent either an attribute or a method but we are not forced to
make such a distinction. A consequence is that we no longer need separate inheritance
or scope rules for state and behavior. For example, methods can be defined in
instances. State can be easily shared without the need of introducing concepts like
class or shared variables. The second distinction concerns the nature of classes and
objects. We are no longer constrained to define classes as static entities and instances
as runtime-only objects. Logtalk source files can describe either classes or instances.
Both types of objects can be either static or dynamically created at runtime. Third,
Logtalk was designed as a neutral, unbiased language, to support both prototype and
class-based programming. We can stick to traditional class-based designs or we can
use prototypes. We may choose to implement full reflective systems or simply use our



classes as instance factories. We can define a single hierarchy as in Smalltalk or Java
or we can have multiple, independent, hierarchies like in C++. We can restrict
ourselves to single inheritance or take advantage of multi-inheritance support.
Contrast these features with languages like C++, Java, or Smalltalk that are defined as
class-based languages, with a clear distinction between variables and methods, about
what is static and what is dynamic, about what must be at achieved compile time or
can be performed at runtime.

3 Category Concept and Implementation

The starting point for the Logtalk category concept comes from the Smalltalk-80
language where methods can be partitioned into named functional categories.
However, Smalltalk-80 categories have only a documentation meaning, used to
organize source code, and implemented by the language class browser. Logtalk
extends this concept by making a category an encapsulation unit, at the same level as
objects or protocols. The main idea is that we can compose a set of categories in order
to define new objects, enabling code reuse without using inheritance or instance-
variable based composition. Conversely, any object may be split in a set of categories.
The splitting is straightforward and the code only requires elementary changes if
predicates in one category need to call predicates in other category (because we are no
longer calling code in the same encapsulation unit). Categories main purpose is the
encapsulation of functional sets of predicates, serving as object building blocks.
Categories are fully implemented in the current Logtalk release, providing the
following properties:

1. Categories have the same encapsulation power as objects: a category may contain
both predicates directives and definitions. A category may also implement one or
more protocols.

2. Category predicates are reused by importing the category into an object. The
predicates are virtually added to the object’s protocol, along with any local object
predicates, without any code duplication.

3. Categories provide runtime transparency: predicates added via a category are
inherited by all the descendants of the importing object and can be called,
redefined or specialized like any other object predicate3. One important
consequence of this property is that an object can be factored in categories
without breaking its clients or its descendants.

                                                                        
3 Nevertheless, Logtalk includes reflection methods that enable us to determine if a

predicate is defined in either a category or an object.



4. An object may import one or more categories. Any number of objects can import
a category. A category is always shared between all importing objects with no
duplication of code.

5. A category may declare and use dynamic predicates. In this case, each importing
object will have its own set of clauses for each dynamic predicate. This enables a
category to define and manage (object) state.

6. An object can restrict the scope of imported category predicates by prefixing the
category name with one of the keywords public, protected, or private, in a
similar way to public, protected and private inheritance. By default, importation
is public if the scope keyword is omitted.

7. Categories are compilation units; i.e., they are independently compiled from
importing objects or implemented protocols, enabling incremental compilation.

8. There are no inheritance or importation mechanisms for categories. They can not
inherit from, or be inherited by, other categories or objects. They can not also
import, or be imported by, other categories. It is thus both meaningless and an
error to send a message to a category.

9. Categories enable an object to be virtually assembled only when created or
loaded to memory. By importing one or more categories, an object will have a
distributed dictionary of predicates composed of its own dictionary and of the
dictionaries of each imported category. An object may then be updated simply by
updating an imported category, without any need to recompile it or to access its
source code.

10. Both classes and prototypes can import a category at the same time; its
implementation is independent of the implementation of either type of object.
The use of categories is orthogonal to the choice of the most appropriated object
concept, enabling the development of category libraries that can be reused in
either prototype or class based designs.

11. Categories can be dynamically created and abolished at runtime (just like objects
or protocols). Note however that runtime creation of new categories does not
imply ant kind of instantiation process: categories are not objects. Instead,
Logtalk uses the same code self-modifying features found in Prolog.

Categories can be seen as a dual concept of Logtalk protocols: protocols provide
interface reuse, while categories enable implementation reuse without using
inheritance. Both protocols and categories are intended to encapsulate cohesive data.
Both are used as building blocks in the definition of new, possibly unrelated, objects,
allowing finer grain reuse. Also, similar to a protocol, a category can be imported by
several objects and an object can import several categories. However, while protocols



can extend other protocols, a category can not be constructed as a composition of
other categories. This can be seen as a limitation that constrains categories to be used
as an enhanced virtual import mechanism, instead of a full blow separation of
concerns or composition mechanism [27]. Nevertheless, despite its simplicity,
categories enjoy several useful properties. But also because of its simplicity,
categories are very easy to implement using current object compiling technology.

Conflicts may arise if two imported categories define the same predicate. This is
akin to multi–inheritance conflicts but much simpler to spot and solve because
categories do not inherit from other categories or objects. In addition, a category is
mainly used to encapsulate a set of functionally cohesive predicates, thus minimizing
the chances of name conflicts. The current Logtalk version uses a simple depth-first
lookup when searching for a predicate, implicitly solving any possible name clashes.

If a category defines the same predicate as an object into which it is imported, the
object predicate overrides the predicate definition defined in the category. Note
however that categories are primarily object building blocks, not object re-factoring
solutions, thus minimizing this kind of conflicts.

3.1 Related Concepts

The Flavors [28] system, an object-oriented extension to LISP [29], introduced the
concept of mixins [30], a coding convention that uses abstract sub-classes to
specialize behavior in parent classes. Mixins are combined, using multi-inheritance,
with other mixins to build regular classes. Mixins, like Logtalk categories, often
encapsulate a set of functionally cohesive methods and attributes. However,
categories are reused by composition while mixins are reused through multi-
inheritance. In a language that supports multi-inheritance, mixins enable flexible
reusing without the need to introducing a new kind of entity. Another important
difference is that, while mixins rely on specialization of parent methods (using the
call-next-method primitive), categories do not need to depend on importing objects.
Categories are often used to encapsulate independent, self-contained code, resulting in
more flexible and powerful reusing mechanism. We can only use a mixin if the class
that inherits the mixin also inherits a parent that defines the method specialized by the
mixin. No such constraints exist in reusing Logtalk categories.

Regarding Smalltalk, most systems define interface primitives for loading and
saving fragments of code. These primitives, historically named FileIn and FileOut,
enable the programmer to add or remove methods and variables from a class. Recent
Smalltalk implementations like VisualWorks improve upon this idea introducing the
concept of parcel. The fragments of code or parcels correspond often to a category or
a set of categories, giving a useful operational meaning to an otherwise
documentation only concept of categories. However, a Smalltalk category is always
associated with a specific class and can not be shared between two or more classes.
Logtalk removes this restriction, generalizing the category concept to enable a
category to be imported into any object.



The Objective-C language also implements a category concept but intended as a
way to extend an existing class with new methods, even when the extended class
source code is not available. It can be seen as an alternative to a sub-class. One can
not however extend a class other than the one specified in the category declaration.
This differs from Logtalk where categories are independent of objects and any
category can be imported by any object. While Objective-C categories are designed to
extend existing code, Logtalk categories are object building blocks. Although two
different concepts, aiming at different goals, they share some important properties
such as run-time transparency, encapsulation of related methods, incremental
compilation, and easier maintenance of complex objects.

The Self [31, 32] prototype programming language defines a concept of traits
prototypes that are used to store common behavior, playing a similar role to classes in
class–based languages. One drawback of traits is that although they are objects, they
cannot answer most messages because the corresponding methods need access to slots
only available in descendant prototypes [33]. Logtalk categories can play the role of
traits as a way to store shared methods with the advantage that is not possible to send
a message to a category.

As we have written in the previous section, Logtalk categories are an evolution of
the Smalltalk-80 functional category concept, taking what is essentially a browser
documentation feature and transforming it in a code reuse language mechanism. As
such, it compares favorably to other reuse mechanisms at the same level as mixins,
multi-inheritance, or instance-based composition. It does not intend however to
compete with higher level solutions to composition of separation of concerns issues
like aspect-oriented programming [34], subject-oriented programming [35], or binary
component adaptation [36] among others.

3.2 Implementation

The current Logtalk version contains a full implementation of all the properties of the
category concept as described in this paper. The system also includes several
examples of the use of categories, some of them presented here in the next session. It
should be noted that the Prolog/Logtalk features of interpreting code either as data or
executable procedures, combined with easy conversion between data and code,
arguably makes it easier to implement features like categories when compared to
languages like C++, Smalltalk, or Java. The Logtalk source files can be downloaded
from the Logtalk web site to close examine of the implementation details.

Objects that import categories and/or implement protocols have a distributed
dictionary of predicates. That is, in addition to a list of local predicates, objects have
links, defined at compile time, to the dictionaries of imported categories and
implemented protocols. These links are always searched before inheritance links.
Categories (and protocols) are compiled such that the encapsulated code can be shared
and used by several objects (either prototypes or instances/classes) at the same time.
This is accomplished in two steps. First, category predicates are compiled like object
predicates, with extended arguments for execution context information. This extended



arguments include self (object that received the original message), this (object,
importing the category, that virtually contains the predicate under execution), and
sender (object that has sent the original message). Second, at runtime, the
object–category dictionary links propagate the current execution context to the
category predicates, enabling them to be used like they have been defined in the
importing object. In the case of dynamic predicates (that is, predicates whose
definition can be modified at runtime), the implementation of the predefined methods
that allow us to add, change and delete definitions ensure that each importing object
will have its own set of definitions.

An important point is the performance cost of adding categories to an object-
oriented language. If all imported categories only contain predicate directives, then
performance should be similar to languages like Objective-C or Java that implement
multi-inheritance of protocols. In the more common situation where a category
contains both predicate directives and definitions, searching for a predicate can
require looking inside an imported category. This has a small performance penalty
that is proportional to the number of imported categories and results from the need to
access several encapsulation units. Because categories can provide alternative
solutions to the use of multi-inheritance (see the points example in the next section),
we should also compare the costs of these two reusing methods. While an inheritance
link may lead to several other inheritance links, following an imported category link
implies only one level of indirection when searching an importing object predicate
dictionary: a category does not inherit or import code from other categories or objects.
This ensures that a design using single-inheritance and categories has a more
predicable and better method lookup performance than an equivalent multi-
inheritance solution.

3.3 Syntax

In order to make the examples in the next section easier to grasp, let us briefly
describe the Logtalk syntax for defining and using categories, complementing the
introduction given in the previous session. To define a new category we use a starting
directive, either category/14 or category/2, and an ending directive,
end_category/0, to encapsulate the predicates directives and clauses:

:- category(Ctg).

...

:- end_ category.

                                                                        
4 In Prolog and in Logtalk directives and predicates are identified by
<name>/<number of arguments>.



If a category implements one or more protocols, we use the category/2 opening
directive. Protocols implemented by a category are listed after the category name:

:- category(Ctg,
implements(Ptc1, Ptc2, ...)).

...

:- end_ category.

To import a set of categories into an object we write:

:- object(Obj,
imports(Ctg1, Ctg2, ...)).

...

:- end_object.

We can restrict the scope of the imported category predicates by using a scope
keyword (either public, protected, or private). For example:

:- object(Obj,
imports(protected::Ctg)).

...

:- end_object.

By default, if the scope keyword is omitted, category importation is public.

4 Examples

The following examples compare instance- with category-based composition and
illustrate how categories can be used for sharing code between selected objects,
providing alternative solutions to multi-inheritance. The current Logtalk distribution
contains several more examples of the use of categories.

4.1 Splitting an Object in Categories

Let us start with the most basic benefits of categories: code documentation and
organization. Most Smalltalk implementations already classify methods in several
functional categories. In these cases, splitting a class using the Logtalk category
concept is a trivial job. Only elementary code changes may be needed if a method in
one category needs to call a method in other category. Let us turn instead our attention



to Java. Take for example the class Float, contained in the java.lang package [12].
This class declares twenty-three new methods that can be easily classified in four
categories named constructors, comparing, testing and converting as follows:

constructors
Float(double value)
Float(float value)
Float(String s)

comparing
compareTo(Object o)
compareTo(Float anotherFloat)
equals(Object obj)

testing
isNaN(),isNaN(float v)
isInfinite(),isInfinite(float v)

converting
hashCode()
toString(), toString(float f)
valueOf(String s)
...

The immediate benefit is to the programmers browsing the class to locate a method to
perform a specific type of service, and results from the simple fact of classifying the
methods in appropriated functional categories. The Java docs present them in
alphabetical order, handy only if we are looking for the details of a known method. It
should be noted however that, just as a class hierarchy implicitly reflects a specific
classification point-of-view over a set of objects, there is usually more than one way
to split a set of methods into functional categories.

4.2 Categories as a Complementary Composition Tool

The category concept here presented provides a composition mechanism different
from what we may call instance-variable composition. Usually, composition is
accomplished by storing references to other objects in instance variables. Comparing
the two mechanisms shows they are complementary, addressing different needs,
rather than competing ways of doing composition. Instance-variable based
composition is mainly used to implement part-of hierarchies. The implied level of
indirection is often used to our advantage to control which methods (if any) are made
available to the clients of the container object. By contrast, the methods imported
from a category are transparently used and are conceptually at the same level of any
object-defined method. Instance-variable composition also implies the creation of new
objects every time a container object is instantiated and, therefore, a policy to control



the process. It is however free from name clashes that may affect multi-inheritance or
category-based composition solutions.

Let us start by defining a category that implements a set of predicates for handling
a dictionary of attributes. We will need public predicates to set, get, and delete
attributes, and a private dynamic predicate to store the dictionary entries. Let us name
these predicates set_attribute/2 and get_attribute/2, for getting and setting an
attribute value, del_attribute/2 for deleting attributes, and attr_/2, for storing the
attribute–value pairs:

:- category(attributes).

:- public(set_attribute/2). % set a pair attr-value
:- public(get_attribute/2). % test/get a pair attr-value
:- public(del_attribute/2). % delete a pair attr-value
:- private(attr_/2). % attributes storage
:- dynamic(attr_/2).

set_attribute(Attr, Value):-
::retractall(attr_(Attr, _)),
::assertz(attr_(Attr, Value)).

get_attribute(Attr, Value):-
::attr_(Attr, Value).

del_attribute(Attr, Value):-
::retract(attr_(Attr, Value)).

:- end_category.

If needed, we can put the predicate directives inside a protocol that will be
implemented by the category:

:- category(attributes,
implements(attributes_protocol)).

...

:- end_category.

We reuse the category predicates by importing them into an object:

:- object(person,
imports(attributes)).

...

:- end_object.



After compiling and loading this object and our category, we can now try queries like:

| ?- person::(set_attribute(name, paulo), set_attribute(gender,
male)).
yes

| ?- person::get_attribute(Attr, Value).
Attribute = name, Value = paulo ;
Attribute = gender, Value = male ;
no

Note that the attributes category interface is now part of the person object interface.
Most object-oriented programming language libraries provide dictionary classes that
we can reuse in our applications, either by multi-inheritance or by composition. In this
example, multi-inheritance would result in viewing person as a kind of dictionary,
hardly an elegant solution. With instance-based composition, glue code will be
needed to add the desired dictionary methods to the public interface of person.
Category-based composition thus provides an alternative solution without any of
these problems. Moreover, the resulting category could be reused in other places of
our application or in other applications.

To further illustrate the differences between instance variable-based and category-
based composition let us give another example using input/output operations.
Assuming a stream-based input/output model, any object may need to define, redirect,
open, read, write or close new streams. Using a category-based approach, we may
start by defining a streaming category, containing predicates to maintain a dictionary
of currently defined streams:

:- category(streaming).

:- public(stream/2). % test/get pair name-stream
:- public(set_stream/2). % define a new pair name-stream
...

:- end_category.

This category may also implement common stream operations. Any object whose
interface must include stream input/output operations can then import this category:

:- object(an_object,
imports(streaming)).

...

:- end_object.



This way we are able, for example, to query the object (or its descendants) about the
streams it defines by using messages like:

| ?- an_object::stream(Name, Stream).

If an instance variable-based solution is preferred or needed, we can still reuse the
streaming category by first importing the category into a class:

:- object(streams,
imports(streaming),
instantiates(class), % some suitable metaclass
specilizes(object)). % some suitable inheritance root

...

:- end_ object.

We can now store instances of this object in instance-variables of any object that
needs to perform stream input/output operations. For example:

:- object(an_object,
imports(attributes)). % from the previous example

init :-
streams::new(Strs),
::set_attribute(streams, Strs),
...

...

:- end_ object.

However, the streaming methods can no longer be used directly:

| ?- an_object::set_stream(Name, Stream).

uncaught exception:
error(existence_error(

predicate_declaration, set_stream(Name, Stream)),
an_object::set_stream(Name, Stream), user)

Messages like this will now generate unknown message exceptions because the
streaming protocol is no longer part of the object protocol.



4.3 Hierarchy Relations

One of the Logtalk companion examples defines a set of categories implementing
methods for inspecting hierarchy relations between objects. Some methods can be
defined for both prototype and class hierarchies and can be abstracted in a common
protocol:

:- protocol(hierarchyp).

:- public(leaf/1). % test/get an hierarchy leaf
:- public(leaves/1). % get list of all hierarchy leaves
...

:- end_protocol.

For prototype hierarchies, we can define methods such as parent/1, ancestor/1, or
descendant/1:

:- category(p_hierarchy,
implements(hierarchyp)).

:- public(ancestor/1). % test/get an ancestor prototype
:- public(descendant/1). % test/get a descendant prototype
:- public(parent/1). % test/get a parent prototype
...

:- end_category.

While for instance/class relations we can have methods like class/1, superclass/1,
or instance/1:

:- category(ic_hierarchy,
implements(hierarchyp)).

:- public(class/1). % test/get an instance class
:- public(instance/1). % test/get a class instance
:- public(superclass/1). % test/get a class superclass
...

:- end_category.

Although these methods are potentially useful for any object, most objects will never
use them. Most applications do not need to perform reflective computations. In
languages like Smalltalk or Java, this kind of methods must be added to the root
object in order to be available for any object that may need them. By encapsulating
these methods in a category, they can be added to the interface of only those objects
that really need them.



4.4 Monitoring Category

Besides integrating logic and object-oriented programming, Logtalk also supports
event-driven programming where an event is generated every time a message is
exchanged between objects. Any object may act as a monitor for a registered event. A
minimal monitor protocol consists only of a callback method, but more sophisticated
behavior is possible. For instance, an object may need to keep a dictionary of events
that can be modified, activated, and suspended. However, not all application objects
will act as monitors and, among those they do, some may only need basic behavior.
Encapsulating the monitor methods in a root object will ensure the requirement that
any object may perform a monitor role but will also just clutter the interface of non-
monitor objects. Moreover, not all applications use event-driven programming.
Defining a monitoring category solves these problems easily:

:- category(monitoring).

:- public(activate/0). % activate events, start monitoring
:- public(add_event/4). % define a new event
:- public(del_event/4). % delete a defined event
:- public(event/4). % test/get a defined event
:- public(reset/0). % stop and delete all events
:- public(suspend/0). % suspend monitoring
...

:- end_category.

Any object that needs more complex monitor behavior just needs to import this
category:

:- object(my_monitor,
imports(monitoring)).

...

:- end_object.

Alternatively, the root of any sub-hierarchy of monitor objects may import the
category. This way, objects that will never perform the role of monitors will not need
to inherit a set of useless methods. Applications that do not use event–driven
programming will not need to include code that will never be called.



4.5 Points

This example shows how categories may be used as an alternative to multi-inheritance
solutions5. The description of the original problem can be found in [37]. Assume that
we want to represent points in a two-dimensional space. We can start by creating a
point class defining a method move/2 to translate a point to a new position, and a
method print/0 that outputs the current position6:

:- object(point,
instantiates(class),
specializes(object)).

:- public(move/2). % move point to a new position
:- public(position/2). % test/get point position
:- public(print/0). % output current point position

:- private(xy_/2). % point position storage
:- dynamic(xy_/2).

move(X, Y) :-
::retractall(xy_(_, _)),
::assertz(xy_(X, Y)).

position(X, Y) :-
::xy_(X, Y).

print :-
self(Self),
::xy_(X, Y),
writeq(Self), write(' @ '), write((X, Y)), nl.

:- end_object.

From this base class, we want to derive two sub-classes: bd_point and hst_point.
Instances of bd_point can only move around in a restricted area. Instances of
hst_point remember its previous positions. The new classes are easily defined by
specialization of the move/2 and print/0 methods:

:- object(bd_point,
instantiates(class),
specializes(point)).

:- private(bds_/3). % coordinate bounds storage
:- dynamic(bds_/3).

                                                                        
5 The full source code of this example is available with the current Logtalk release.
6 To save space, code related to instance initialization is omitted in this example.



move(X, Y) :-
::bds_(x, MinX, MaxX),
X >= MinX, X =< MaxX,
::bds_(y, MinY, MaxY),
Y >= MinY, Y =< MaxY,
^^move(X, Y).

print :-
::bds_(x, MinX, MaxX),
writeq(bds(x)), write(': '), write((MinX, MaxX)), nl,
::bds_(y, MinY, MaxY),
writeq(bds(y)), write(': '), write((MinY, MaxY)), nl,
^^print.

:- end_object.

Similar for the hst_point class:

:- object(hst_point,
instantiates(class),
specializes(point)).

:- private(hst_/1). % position history storage
:- dynamic(hst_/1).

move(X, Y) :-
::position(X0, Y0),
^^move(X, Y),
::retract(hst_(Hst)),
::assertz(hst_([(X0,Y0)| Hst])).

print :-
::hst_(Hst),
write('history: '), write(Hst), nl.
^^print.

:- end_object.

Now assume that we want to define another sub-class, named bd_hst_point, which
combines the behavior of both bd_point and hst_point. This suggests a multiple
inheritance solution: bd_hst_point clearly specialize both bd_point and hst_point,
sub-classes of point. However, this solution, even if possible, hides several
problems. The first obstacle is that the bounded and the history behavior are
embedded in the specialization of methods move/2 and print/0. Defining new
methods such as check_bds/2 and print_bds/2 in class bd_point and
add_to_hst/2 and print_hst/0 in class hst_point can easily solve this particular
problem.  A bigger problem is that the basic behavior for moving or printing a point is



defined in class point. However, because the corresponding methods are redefined in
classes bd_point and hst_point, how does one call the original definitions stored in
point? Note that if the methods move/2 and print/0 are inherited from both
hst_point and bd_point then a point will be moved and printed twice. If the
inheritance is carried out, for each method, only from one of the superclasses, then we
will be breaking the problem symmetry. The class bd_hst_point could build its own
definitions of methods move/2 and print/0, adding to the inherited definitions from
one of the superclasses the calls to the methods specific of the other superclass.
However, this solution is also problematic. Let us assume that the method move/2 is
inherited from class hst_point (by using some suitable super call). Then, any change
on the definition of the same method in class bd_point will be ignored by
bd_hst_point. In a large program, such problems can easily get unnoticed because
the symmetry suggested by the multiple inheritance design is not reflected by the
actual implementation. Such problem could be avoided by explicitly adding the class
point as a base class for bd_hst_point. For example, in Eiffel we will need to
rename (and discard!) the conflicting inherited methods of both base classes:

class
bd_hst_point

inherit
bd_point

rename
move as bp_move,
print as bp_print

end
hst_point

rename
move as hp_move,
print as hp_print

end
point

redefine move, print end
feature

print is
do

precursor
print_bds
print_hst

end
...

end



This solution could also be implemented in C++ using virtual base classes:

class bd_hst_point
: public virtual point, public bd_point, public hst_point {

...
void print();
...

}

void bd_hst_point::print()
{

point::print();
bd_point::print();
hst_point::print();

}

This way the class point will provide the basic behavior for the move/2 and print/0
methods. These two methods are redefined in order to include the needed calls to the
methods inherited from classes bd_point and hst_point that implement the bounded
and the history behavior.

In Logtalk, we can use categories to solve this problem in a clean and extensible
way without using multi-inheritance. In order to do so, we will start by defining two
new categories, bd_coord and point_hst. The bd_coord category will contain the
methods associated with point coordinate bounds:

:- category(bd_coord).

:- public(set_bds/3). % store a coordinate bounds
:- public(bds/3). % test/get coordinate bounds
:- public(check_bds/2). % checks coordinate value
:- public(print_bds/1). % print a coordinate bounds

:- private(bds_/3). % coordinate bounds storage
:- dynamic(bds_/3).

set_bds(Coord, Min, Max) :-
::retractall(bds_(Coord, _, _)),
::assertz(bds_(Coord, Min, Max)).

bds(Coord, Min, Max) :-
::bds_(Coord, Min, Max).

check_bds(Coord, Value) :-
::bds_(Coord, Min, Max),
Value >= Min, Value =< Max.



print_bds(Coord) :-
::bds_(Coord, Min, Max),
writeq(bds(Coord)), write(': '), write((Min, Max)), nl.

:- end_category.

The methods for storing previous point positions will be encapsulated in the
point_hst category:

:- category(point_hst).

:- public(add_to_hst/1). % store a point position
:- public(init_hst/1). % initialize position history
:- public(hst/1). % get the point history
:- public(print_hst/0). % print the point history

:- private(hst_/1). % position history storage
:- dynamic(hst_/1).

add_to_hst(Pos) :-
::retract(hst_(Hst)),
::assertz(hst_([Pos| Hst])).

init_hst(Hst) :-
::retractall(hst_(_)),
::assertz(hst_(Hst)).

hst(Hst) :-
::hst_(Hst).

print_hst :-
::hst_(Hst),
write('history: '), write(Hst), nl.

:- end_category.

Each one of the bd_point, hst_point and bd_hst_point classes will import the
related categories in order to provide the intended behavior:

:- object(bd_point,
imports(bd_coord),
instantiates(class),
specializes(point)).

move(X, Y) :-
::check_bds(x, X),
::check_bds(y, Y),
^^move(X, Y).



print :-
::print_bds(x),
::print_bds(y),
^^print.

:- end_object.

Likewise for the hst_point class:

:- object(hst_point,
imports(point_hst),
instantiates(class),
specializes(point)).

move(X, Y) :-
::position(X0, Y0),
^^move(X, Y),
::add_to_hst((X0, Y0)).

print :-
::print_hst,
^^print.

:- end_object.

The bd_hst_point class will be defined as a point subclass, importing both
point_hst and bd_coord categories:

:- object(bd_hst_point,
imports(bd_coord, point_hst),
instantiates(class),
specializes(point)).

move(X, Y) :-
::check_bds(x, X),
::check_bds(y, Y),
::position(X0, Y0),
^^move(X, Y),
::add_to_hst((X0, Y0)).

print :-
::print_bds(x),
::print_bds(y),
::print_hst,
^^print.

:- end_object.



Note that the redefinition of our classes using the newly defined categories is
transparent to the classes clients and descendants. Also, bd_hst_point is independent
of both bd_point and hst_point yet it shares their behavior via the common
imported categories. This solution can be easily extended if we need to add other
point flavors besides coordinate bounds or position history. Using categories, we just
import into an object each category implementing a desired flavor, no matter how
many flavors and flavors combinations we may have. Contrast this with a multi-
inheritance solution where each new flavor will need to be implemented as a new sub-
class, possibly inheriting from several other flavor sub-classes, resulting in high levels
of coupling between objects. We have thus found not only an alternative solution to
the use of multi-inheritance but also a better one: a way to freely combine multiple
orthogonal implementations without applying multi-inheritance mechanisms.

To end this example here are some possible messages sent using the
Logtalk/Prolog top-level interpreter:

| ?- point::new(P,[xy-(1, 3)]), P::(print,  move(7, 4), print).

p1 @ (1, 3)

p1 @ (7, 4)

P = p1
yes

Similar messages but with bounds on coordinate values:

| ?- bd_point::new(P,[xy-(1, 3), bds(x)-(0, 13), bds(y)-(-7, 7)]),
P::(print, move(7, 4), print).

bds(x): 0,13
bds(y): -7,7
bp11 @ (1, 3)

bds(x): 0,13
bds(y): -7,7
bp2 @ (7, 4)

P = bp2
yes

Same problem but storing the history of past point positions:

| ?- hst_point::new(P,[xy-(1, 3)]), P::(print, move(7, 4), print).

history: []
hp3 @ (1, 3)



history: [(1,3)]
hp3 @ (7, 4)

P = hp3
yes

Same problem but with bounds on coordinate values and storing past positions:

| ?- bd_hst_point::new(P,[xy-(1, 3), bds(x)-(0, 13), bds(y)-(-7,
7)]), P::(print, move(7, 4), print).

bds(x): 0,13
bds(y): -7,7
history: []
bhp4 @ (1, 3)

bds(x): 0,13
bds(y): -7,7
history: [(1,3)]
bhp4 @ (7, 4)

P = bhp4
yes

5 Conclusions

Logtalk categories are a simple and natural evolution of the original Smalltalk
category concept, easily implemented using the same compilation techniques that we
apply to objects. Despite its simplicity, categories enable good solutions for reusing
sets of utility methods and multi-inheritance designs.

The category concept is being actively used in the development of the Logtalk
standard library and is being evaluated by writing Logtalk applications. Logtalk is an
object-oriented programming research language and, as such, a natural environment
for trying out new ideas. However, adding a new feature to an established language
must always be carefully pondered. We believe that the category concept here
presented brings several important advantages to object-oriented languages and, in
particular, to single inheritance languages. Summarizing our main results, categories
can be used to:

• Provide alternative solutions to the use of multi-inheritance for single-
inheritance languages. Even for multi-inheritance languages, categories enable
elegant implementations that minimize object coupling.

• Complement instance variable based composition by providing a composition
mechanism where composed methods are at the same level as the container object



methods, with full run-time transparency. Category imported methods are called,
redefined, and otherwise used like any container object method.

• Enable different, unrelated objects, to share and reuse methods without using
inheritance. This way methods can be made available to only those objects that
really need them, avoiding large root objects populated with code that most
descendants will never use.

• Split complex objects into a set of more manageable components, each
containing a functionally cohesive set of methods that can be independently
developed, compiled, and reused. Besides the advantages of incremental
compilation, categories also make it possible to update an object without accessing
its full source code.

• Encapsulate code that does not fit the notion of, or does not make sense as, an
object. Two good examples are the Smalltalk dependency mechanism and the
Logtalk monitoring methods.

It is also important not to forget the benefits that are inherited from the original
Smalltalk-80 concept of methods functional categories, regarding code documentation
and organization. Tacked together, all these features promote cleaner and simpler
object-oriented designs and help improve reuse across object-oriented applications.

6 Future Work

An interesting research path will be to implement categories in common languages
like Java or Smalltalk, either by using a pre-processor approach like in Logtalk, or by
modifying an existing compiler. A good candidate will be a language like Squeak, a
Smalltalk system written using Smalltalk itself, making it easy to modify and try out
new features. We expect categories to be easy to implement in dynamically type
checked languages and, with some more work, in statically type checked languages
like C++, retaining all the features listed in the conclusions.

Future work may also include extending the Logtalk concept of categories to
include some of the features of Objective-C categories. More specifically, the
possibility of augmenting a class protocol without modifying its source code. Note
that Logtalk categories already enable us to update an object interface by updating an
imported category, but the imports clause can not be added or changed at runtime. A
possible solution may be to adopt a mechanism to establish an import link without
requiring sources changes on either importing objects or imported categories. Another
possible, more explicit and declarative solution, will be to allow an object to import a
set of matching categories. If we extend the identity concept to allow category names
with the same name but different arguments, we could then write:



:- object(an_obj,
imports(a_ctg(_)). % import all matching categories

...

:- end_object.

If we then have the following two matching categories:

:- category(a_ctg(foo)).

:- public(foo/1).
...

:- end_category.

:- category(a_ctg(bar)).

:- public(bar/1).
...

:- end_category.

Our object could then answer messages defined in all matching categories. For
example:

| ?- an_obj::(foo(X), bar(Y)).

This solution is not difficult to implement but, as a language feature, it will probably
be a source of misunderstandings because it uses the same syntax of parametric
objects with a very different semantics. It is also not clear that its benefits will
outweigh the added complexity.
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