
Universidade da Beira Interior
Departamento de Informática

Logtalk

Design of an Object-Oriented
Logic Programming Language

Paulo Jorge Lopes de Moura

Thesis submitted in candidature for the degree of
Doctor of Philosophy (Computer Science)

Tese submetida à Universidade da Beira Interior para obtenção do grau de
Doutor em Engenharia Informática

Covilhã
2003

iii

Thesis written under the supervision of

Dr. Abel João Padrão Gomes

Assistant Professor of the Department of Informatics of the
University of Beira Interior

Tese realizada sob a orientação do

Professor Doutor Abel João Padrão Gomes

Professor Auxiliar do Departamento de Informática da
Universidade da Beira Interior

v

“There are no answers, only choices.”

Gibarian to Kelvin in “Solaris”, Steven Soderbergh’s movie
based on Stanislaw Lem novel of the same name

“Não existem respostas, somente escolhas.”

Gibarian para Kelvin, no filme “Solaris” realizado por Steven Soderbergh,
baseado no livro de Stanislaw Lem com o mesmo nome

vii

To my parents

Aos meus pais

Acknowledgements

This work has been characterized by changes on advisors and work places. It started at
the Department of Mathematics of the University of Coimbra on January of 1998, in a
very hostile working environment to anything related to computer science. In September
of 1999, the author moved himself to the University of Beira Interior to be closer to its
beloved one. By the end of Spring of 2000, work on Logtalk and on the writing of this
thesis almost stalled for more than a year due to personal problems. There are simply
more important things in life than a Ph.D. thesis. With the help of my family and
friends, things got better and I resumed work on developing Logtalk and on the writing
of this thesis.

The decision to write this thesis in English was motivated by both the wish to improve
my writing skills in this language and to ensure that my work will be available to a much
wider audience than if it was written in Portuguese. This proved more difficult than
anticipated. I wish to express my gratitude to Abel Gomes, Ana Prata, José Camões
Silva, and Susana Ferreira for helping me in correcting the most blatant mistakes. Any
remaining errors are, of course, my own responsibility. In addition, I want to thank my
university for allowing me to write my thesis in English, a decision that always generates
some controversy.

Many thanks to Abel Gomes, my Ph.D. advisor, for its continued support and friendship.

Thanks to all my colleagues for all their feedback regarding this work, especially Simão
de Sousa for reading and commenting much of the final draft of this thesis in record
time.

Thanks to all Logtalk users that contributed with bug reports, requests for improve-
ments, and support by writing applications that provided test beds for the Logtalk
language.

A special thanks to my family and friends for their enduring support, which is also an
apology for my absence during the final writing stage of this thesis.

ix

Abstract

This thesis describes the design, implementation, and documentation of Logtalk, an
object-oriented logic programming language. Logtalk is designed as an extension to the
Prolog logic programming language providing encapsulation features based on object-
oriented concepts. Logtalk major features include support for both prototypes and
classes in the same application, integration of event-driven programming with object-
oriented programming, and category-based code reusing.

Keywords: Logtalk, Prolog, Logic programming, Object-oriented programming, Event-
driven programming

Resumo

A presente tese descreve o desenvolvimento, implementação e documentação de uma
linguagem de programação em lógica orientada para objectos denominada Logtalk, con-
strúıda como uma extensão à linguagem de programação em lógica Prolog, implemen-
tando mecanismos de encapsulamento basedos nos conceitos da programação orientada
para objectos. As principais caracteŕısticas da linguagem Logtalk são o suporte de
protótipos e classes na mesma aplicação, a integração da programação dirigida por even-
tos com a programação orientada para objectos e a reutilização de código baseada em
categorias.

Palavras-chave: Logtalk, Prolog, Programação em Lógica, Programação Orientada para
Objectos, Programação Dirigida por Eventos

xi

Extended abstract in Portuguese

Este resumo alargado em ĺıngua portuguesa descreve os objectivos desta tese, a meto-
dologia de trabalho seguida, as principais conclusões, assim como o trabalho planeado
para o futuro.

Objectivos

Esta tese descreve o desenvolvimento de uma linguagem de programação em lógica
orientada para objectos, denominada por Logtalk. A linguagem Logtalk foi constrúıda
como uma extensão à linguagem de programação em lógica Prolog, na medida em que
implementa mecanismos de encapsulamento e de reutilização de código basedos nos
conceitos da programação orientada para objectos. Este trabalho tem um conjunto de
objectivos que podem ser divididos em dois grupos: objectivos cient́ıficos e objectivos
técnicos.

Objectivos cient́ıficos

O princiapal objectivo cient́ıfico é a integração dos conceitos da programação em lógica,
da programação orientada para objectos e da programação dirigida por eventos numa
mesma linguagem de programação.

Integração da programação em lógica com a programação orientada para
objectos

A integração da programação em lógica com a programação orientada para objectos, sob
a forma de uma extensão à linguagem Prolog, visa dotar esta linguagem de mecanismos
de encapsulamento e reutilização de código baseados no conceito de objecto. Desta
forma, o conhecimento sobre cada objecto do domı́nio de uma aplicação pode ser re-
presentado de forma declarativa. Para além disso, esta integração vem dar resposta a
alguns dos problemas de engenharia de software que afectam a programação em Prolog
quando aplicada a problemas de grande complexidade e dimensão.

Integração da programação dirigida por eventos com a programação orien-
tada para objectos

A programação dirigida por eventos permite a construção de sistemas reactivos, caracte-
rizados pelo facto de as computações serem iniciadas como consequência da ocorrência de
eventos. Assim sendo, a programação dirigida por eventos complementa a programação
orientada para objectos, na qual todas as computações resultam do envio de mensagens

xiii

xiv Extended abstract in Portuguese

a objectos. A ideia base para a integração destas duas formas de programação é esta-
belecer uma correspondência entre o conceito de evento e o envio de uma mensagem
a um objecto. O programador define então que eventos observar e quais os objectos
que actuarão como monitores desses objectos. Esta integração é fundamental na pro-
gramação de relações entre objectos nas quais existem dependências entre o estado dos
objectos participantes. A utilização de eventos permite minimizar as dependências en-
tre os objectos e maximizar a sua coesão interna. A implementação dos conceitos de
evento e monitor aumenta as capacidades de computação reflexiva da linguagem Logtalk,
permitindo a definição fácil de ferramentas como, por exemplo, depuradores.

Suporte para sistemas baseados em protótipos e sistemas baseados em classes

Praticamente todas as linguagens de programação orientadas para objectos são baseadas
em protótipos ou baseadas em classes. A grande maioria das linguagens é baseada
em classes. No contexto da linguagem Prolog, a utilização de protótipos é a solução
mais adequada para substituir a utilização de módulos. Tal como um módulo, um
protótipo pode ser definido sem recursos a outras entidades e, ao contrário de classes e
instâncias, não necessita de estar integrado numa hierarquia. No entanto, dependendo
das aplicações, uma solução utilizando classes e instâncias poderá ser mais adequada
do que uma solução baseada em protótipos. Por estes motivos, pretende-se integrar em
Logtalk suporte quer para sistemas baseados em protótipos, quer para sistemas basea-
dos em classes. A ideia é que este suporte seja implementado de forma a não priveligiar
nenhum tipo de sistema e de forma a partilhar a generalidade das primitivas da lin-
guagem, incluindo os mecanismos de envio de mensagens, os predicados pré-definidos
sobre objectos e os métodos pré-definidos.

Objectivos técnicos

Para além dos objectivos cient́ıficos acima enunciados, existe também um conjunto de
objectivos técnicos que visam dotar a linguagem Logtalk de paridade, a ńıvel de ca-
racteŕısticas, com outras extensões ao Prolog e com outras linguagens de programação
orientadas para objectos.

Suporte para múltiplas hierarquias de objectos

Um das caracteŕısticas necessárias da linguagem Logtalk é o suporte para múltiplas
hierarquias de objectos, uma necessidade que decorre da integração de protótipos e
classes na mesma linguagem. Podemos assim ter várias hierarquias independentes de
objectos, quer de protótipos, quer de classes.

Separação entre interface e implementação

A separação entre interface e implementação é uma caracteŕıstica fundamental de qual-
quer linguagem actual de programação. Esta caracteŕıstica não é contudo suportada
pela maioria dos sistemas de módulos para Prolog, pela norma da ISO para módulos
em Prolog, e pela maioria das extensões ao Prolog para programação orientada para
objectos. No caso da linguagem Logtalk, pretende-se que uma mesma interface possa
ser implementada por vários objectos (protótipos e classes) e que um mesmo objecto
possa implementar várias interfaces.

xv

Predicados privados, protegidos e públicos

Pretende-se que a linguagem Logtalk suporte a declaração de predicados privados, pro-
tegidos e públicos, com regras semelhantes às de outras linguagens de programação.
Note-se que esta é uma caracteŕıstica que não é suportada pela norma corrente da ISO
para módulos em Prolog. Nesta norma, como aliás na maioria dos sistemas de módulos
dispońıveis em compiladores Prolog, qualquer predicado encapsulado pode ser chamado
desde que o seu nome seja conhecido.

Herança privada, protegida e pública

Pretende-se que a linguagem Logtalk suporte herança privada, protegida e pública,
complementando o suporte para predicados de objectos privados, protegidos e públicos,
de forma semelhante a outras linguagens de programação orientadas para objectos.

Objectos parametrizáveis

Um objecto parametrizável é um objecto cujo identificador é um termo composto con-
tendo variáveis livres. Estas variáveis desempenham o papel de parâmetros, podendo ser
utilizadas na definição dos predicados do objecto. Os objectos parametrizáveis podem
ser vistos como uma forma de associarmos um conjunto de predicados a um termo com-
posto (o identificador do objecto). Do ponto de vista da programação orientada para
objectos, podemos usar parâmetros para representar o estado de um objecto que, sendo
definido quando o objecto é criado, não é modificado durante o seu tempo de vida. O
suporte para objectos parametrizáveis é uma caracteŕıstica comum a outras extensões
ao Prolog.

Curva suave de aprendizagem

Pretende-se que a linguagem Logtalk seja desenhada e implementada como uma extensão
natural à linguagem Prolog. O objectivo é conseguir que a linguagem Logtalk tenha uma
curva suave de aprendizagem através da utilização de estruturas de controlo familiares
aos programadores em Prolog e do recurso, sempre que posśıvel, à sintaxe habitual do
Prolog.

Compatibilidade com a maioria dos compiladores Prolog e com a norma da
ISO

Um dos principais objectivos para a implementação da linguagem Logtalk é a com-
patibilidade com a generalidade dos compiladores Prolog e com a norma da ISO para
esta linguagem. Este objectivo é tido em conta na concepção da linguagem de modo a
serem minimizadas as caracteŕısticas dependentes da implementação. Pretende-se assim
maximizar a portabilidade quer da linguagem, quer dos seus programas.

Metodologia de trabalho adoptada

Os resultados obtidos neste trabalho são não só uma consequência dos objectivos acima
enunciados, mas também da metodologia de trabalho adoptada. Esta segue os seguintes
prinćıpios:

xvi Extended abstract in Portuguese

• Implementar todas as caracteŕısticas da linguagem.

• Testar a linguagem através de exemplos que tirem partido de cada uma das ca-
racteŕısticas da linguagem.

• Disponibilizar a implementação da linguagem no maior número posśıvel de sis-
temas operativos e de compiladores Prolog.

• Recolher opiniões cŕıticas sobre a linguagem através da disponibilização regular de
versões públicas do compilador, da linguagem, dos exemplos e da documentação.

• Comparar soluções para problemas comuns em Logtalk com soluções implemen-
tadas através doutras linguagens de programação orientadas para objectos.

• Evitar descrever caracteŕısticas não implementadas a menos que a sua viabilidade
possa ser demonstrada esquematizando uma posśıvel implementação.

• Ensinar a linguagem a estudantes de licenciatura que estejam familiarizados com
outras linguagens de programação. Usar os resultados obtidos para melhorar a
linguagem e a sua documentação.

Algumas das consequências destes prinćıpios são:

• É necessário tomar uma decisão entre implementar um protótipo do sistema (como
demonstração da sua viabilidade) ou implementar um sistema robusto e completo
com todas as caracteŕısticas da linguagem. Foi escolhida a segunda opção.

• A qualidade da documentação é essencial para conquistar utilizadores e progra-
madores para a linguagem Logtalk.

• O desenvolvimento de bons exemplos é essencial para ajudar novos utilizadores a
aprenderem a programar em Logtalk.

• Implementar, documentar e construir exemplos de programas que utilizem cada
uma das caracteŕısticas de uma linguagem permite demonstrar a simplicidade e
viabilidade das nossas ideias.

• Disponibilizar versões públicas do Logtalk implica tomar decisões sobre que li-
cenças de utilização adoptar e, consequentemente, sobre o suporte a disponibilizar
para os utilizadores da linguagem.

Principais resultados

A linguagem Logtalk pode ser descrita como uma linguagem de programação multi-
paradigma que suporta a programação em lógica, a programação orientada para obje-
ctos e a programação dirigida por eventos. No entanto, o objectivo da linguagem não é
apenas suportar estes diferentes paradigmas mas também a sua integração. Esta inte-
gração foi conseguida, em primeiro lugar, pela reinterpretação dos conceitos de objectos
no contexto da programação em lógica e, em segundo lugar, pela reinterpretação dos
conceitos de eventos no contexo da programação orientada para objectos.

xvii

Logtalk como uma extensão ao Prolog

Na linguagem Logtalk o conceito de objecto é reinterpretado como contendo um conjunto
de directivas de predicados (declarações) e um conjunto de cláusulas (definições). O
conceito de envio de mensagem é reinterpretado como a construção de uma prova usando
os predicados definidos para um objecto. Um método é simplesmente a definição de
um predicado seleccionada para responder a uma mensagem. O conjunto de predicados
definidos para um objecto é determinado através do uso de mecanismos de herança entre
objectos. Ao reinterpretarmos os conceitos de objecto, mensagem e método nos termos
da programação em lógica, estabelecemos um mapeamento simples entre a semântica
da linguagem Logtalk e a semântica da linguagem Prolog.

De uma forma genérica, esta reinterpretação é comum à maioria das extensões ao
Prolog para programação orientada para objectos. Para podermos comparar e diferen-
ciar o Logtalk de outras extensões iremos utilizar os seguintes critérios: compatibilidade
com compiladores Prolog, sintaxe, interpretação do conceito de objecto, caracteŕısticas
suportadas e ambiente de desenvolvimento.

Compatibilidade da implementação do Logtalk

O Logtalk é a única extensão ao Prolog para programação orientada para objectos,
dispońıvel actualmente, que foi projectada para ser compat́ıvel com a generalidade dos
compiladores Prolog e com a norma da ISO para esta linguagem. Este objectivo dife-
rencia o Logtalk das restantes extensões. A implementação da linguagem sob a forma de
um pré-processador permite que a linguagem seja utilizada na generalidade dos sistemas
operativos para os quais existe um compildor Prolog dispońıvel. Concretamente, a versão
corrente do Logtalk é compat́ıvel com trinta e uma versões de vinte compiladores Prolog.

Sintaxe do Logtalk

O Logtalk utiliza, sempre que posśıvel, a sintaxe do Prolog, procurando definir primitivas
que sejam elegantes e estejam de acordo com as expectativas dos programadores em
Prolog, suavizando desta forma a curva de aprendizagem da linguagem. O que está
aqui em causa é mais do que uma questão de açucar sintáctico. Por exemplo, o Logtalk
permite encapsular e usar código Prolog sem que este necessite de sofrer quaisquer
alterações. Apenas quando é necessário chamar predicados definidos noutros objectos
é que necessitamos de fazer pequenas alterações ao código original. Isto assegura uma
fácil reconversão de programas em Prolog.

O papel dos objectos na programação em lógica

O objectivo principal do suporte para objectos em Logtalk é o encapsulamento e a re-
utilização de código. Há assim uma separação entre esta funcionalidade e as questões
teóricas das mudanças de estado dinâmicas que são caracteŕısticas do conceito de objecto
noutras linguagens. Desta forma, ao darmos privilégio às propriedades de encapsula-
mento e à reutilização de código dos objectos, a linguagem Logtalk pode ser utilizada
como uma ferramenta efectiva para solucionar os problemas de engenharia de software
que surgem quando usamos a linguagem Prolog em problemas de grande dimensão.

xviii Extended abstract in Portuguese

Soluções de implementação para conceitos de objectos

A linguagem Logtalk mostra como implementar em Prolog os principais conceitos da
programação orientada para objectos. Uma parte destes conceitos não são encontrados
individualmente na maioria das extensões existentes ao Prolog: suporte para protótipos e
classes; meta-classes; protocolos e hierarquias de protocolos; predicados privados, prote-
gidos e públicos; herança privada, protegida e pública. A linguagem Logtalk é assim uma
das mais completas extensões ao Prolog para programação orientada para objectos. O
Logtalk mostra também como implementar em Prolog outros conceitos importantes que
não estão dispońıveis noutras extensões como é o caso das categorias e da programação
dirigida por eventos. Ao contrário de outras extensões que ou são proprietárias ou
dependem fortemente dos detalhes de sistemas nativos de módulos, as soluções de im-
plementação do Logtalk são compat́ıveis com qualquer compilador Prolog que siga, na
generalidade, a norma da ISO para esta linguagem.

Objectos como alternativa aos módulos

Os objectos do Logtalk são uma alternativa à utilização de módulos na programação
em Prolog. Tal como os módulos, podemos definir objectos como entidades autónomas
de encapsulamento usando protótipos. Além disso, apesar do Logtalk não fornecer uma
alternativa directa para as directivas de importação e exportação de predicados dos sis-
temas de módulos, as relações de extensão entre protótipos, juntamente com as relações
de implementação de protocolos e as relações de importação de categorias permitem uma
funcionalidade equivalente. Os objectos do Logtalk têm também importantes vantagens
relativamente aos sistemas de módulos usados em compiladores Prolog e ao sistema de
módulos especificado na norma da ISO:

• As directivas de visibilidade de predicados do Logtalk asseguram a protecção de
predicados encapsulados, uma caracteŕıstica ausente na norma ISO para o sistema
de módulos do Prolog.

Na linguagem Logtalk, os mecanismos de envio de mensagens e os predicados e métodos
pré-definidos asseguram o cumprimento das directivas de visibilidade dos predicados.
Em contraste, a norma ISO permite que qualquer predicado seja chamado através da
qualificação expĺıcita da chamada com o nome do módulo. Mecanismos de protecção de
predicados são classificados como opcionais e dependentes da implementação da norma
em cada compilador Prolog particular.

• Separação entre interface e implementação.

Ao contrário das interfaces de módulos, os protocolos do Logtalk podem ser implemen-
tados por qualquer número de objectos. Além disso, um objecto pode implementar
qualquer número de protocolos.

• Compatibilidade com os compiladores Prolog existentes.

O Logtalk é compat́ıvel com praticamente todos os compiladores Prolog modernos. A
norma ISO para módulos em Prolog não foi até ao momento adoptada pela generalidade
dos compiladores, em boa parte devido às diferenças entre esta e os sistemas de módulos
mais difundidos e utilizados.

xix

• A norma da ISO especifica duas formas incompat́ıveis de declarar meta-predicados.
Problemas deste género não existem em Logtalk.

Em todas as normas existem caracteŕısticas que, pela sua natureza, não podem ser
especificadas, ficando dependente das diferentes implementações. A sintaxe para declara-
ção de meta-predicados não é certamente uma dessas caracteŕısiticas.

• O Logtalk suporta um conjunto de caracteŕısticas importantes no contexto do
desenvolvimento de projectos de grande dimensão, as quais estão fora do âmbito
dos sistemas de módulos.

Estas caracteŕısticas incluem a reutilização e especialização de predicados através dos
mecanismos de composição e herança, a programação dirigida por eventos, a programa-
ção reflexiva e a geração automática de documentação de programas.

Ambiente de desenvolvimento e outras questões prácticas

O ambiente de desenvolvimento de programas em Logtalk é condicionado pelo sub-
conjunto de caracteŕısticas comuns aos compiladores Prolog compat́ıveis com a extensão.
Por exemplo, não existe um conjunto comum de predicados para acesso às funcionali-
dades dos sistemas operativos, o que restringe a funcionalidade do compilador do Log-
talk. Não existem também normas comuns para construir interfaces gráficas em Prolog.
As extensões comerciais ao Prolog para programação orientada a objectos têm a van-
tagem de apenas terem de ser compat́ıveis com um único compilador, podendo assim
tirar partido de caracteŕısticas únicas, o que permite a construção de ambientes sofisti-
cados de desenvolvimento. Apesar disso, e dentro das restrições de compatibilidade do
Logtalk, a versão actual da linguagem é acompanhada de recursos que proporcionam
uma funcionalidade semelhante aos ambientes de desenvolvimento não-gráficos de outras
linguagens de programação. Por exemplo, o sistema contém ficheiros de configuração de
editores de texto para reconhecimento da sintaxe dos programas em Logtalk. O sistema
contém ainda um grande número de exemplos e documentação extensiva que inclui um
manual do utilizador, um manual de referência e tutoriais.

Fora do mundo académico, estas questões práticas têm tanta importância como
as caracteŕısticas técnicas e os avanços cient́ıficos representados pela linguagem, sendo
fundamentais na contrução de uma comunidade de utilizadores que utilize a linguagem
Logtalk na resolução de problemas reais.

Logtalk como uma linguagem de programação orientada para objectos

O Logtalk estende a linguagem Prolog da mesma forma que, por exemplo, o CLOS
estende a linguagem LISP ou o Objective-C estende a linguagem C. Enquanto linguagem
de programação, o Logtalk partilha caracteŕısticas com as linguagens mais comuns orien-
tadas para objectos. Existem, no entanto, diferenças importantes devido ao facto do
Logtalk ser baseado na linguagem Prolog. A diferença mais significativa é que o Logtalk
elimina algumas das dicotomias enraizadas na maioria das linguagens orientadas para
objectos. Estas dicotomias são frequentemente utilizadas para caracterizar e classificar
estas linguagens. Especificamente, a linguagem Logtalk não faz distinção entre variáveis
e métodos, suporta simultaneamente protótipos e classes e permite que as entidades e
os seus predicados sejam estáticos ou dinâmicos.

xx Extended abstract in Portuguese

Predicates como variáveis e métodos

Os predicados dos objectos Logtalk unificam os conceitos de métodos e variáveis de
objectos, simplificando assim a semântica da linguagem. A utilização de predicados
remove a dicotomia entre estado e comportamento: um predicado apenas declara aquilo
que é verdadeiro sobre um objecto. Podemos usar predicados na representação quer de
métodos, quer de variáveis, mas tal distinção é opcional. Daqui decorre que deixamos
de necessitar de regras separadas para a definição, herança e visibilidade de estado e de
comportamento. Desta forma podemos naturalmente partilhar estado e comportamento
via herança ou, pelo contrário, definir ambos localmente num objecto. Podemos assim,
por exemplo, definir métodos em instâncias e partilhar estado com os descendentes de
um objecto sem que seja necessário formalizar conceitos como o de variáveis partilhadas
de instância.

Elementos estáticos e dinâmicos da linguagem

Os objectos, protocolos, categorias e predicados do Logtalk podem ser estáticos ou
dinâmicos. Além disso, podemos inserir e apagar cláusulas de predicados, quer em
objectos estáticos, quer em objectos dinâmicos, durante a execucção. Podemos definir
objectos, protocolos e categorias através de ficheiros com o código fonte ou criá-los di-
namicamente durante a execucção. O programador não está limitado, por exemplo, a
definir classes como entidades estáticas e instâncias como entidades dinâmicas que exis-
tem apenas durante a execucção. Podemos assim, por exemplo, definir uma instância
num ficheiro como uma entidade estática, da mesma forma que podemos criar dinami-
camente uma nova classe durante a execucção.

Suporte para protótipos e classes

O Logtalk é um linguagem neutra que suporta igualmente quer a programação baseada
em protótipos, quer a programação baseada em classes. Ambos os dois tipos de objectos
podem ser utilizados ao mesmo tempo, na mesma aplicação, trocando livremente men-
sagens entre si. Em Logtalk, classes, instâncias e protótipos são simplemente objectos
— entidades de encapsulamento — caracterizados por diferentes conjuntos de regras
sobre como aceder aos predicados neles encapsulados e nos seus antecessores. Classes e
protótipos partilham os mesmos predicados pré-definidos para criar, apagar e enumerar
objectos. Partilham também os mecanismos de envio de mensagens e os métodos pré-
definidos para modificação dinâmica de predicados. Além disso, protocolos e categorias
podem ser, respectivamente, implementados e importados por qualquer tipo de objecto.

A neutralidade da linguagem Logtalk traduz-se pela diversidade de tipos de sistemas
de objectos que podem coexisitir numa mesma aplicação, todos eles suportados de forma
igual. Podemos definir uma única hierarquia de classes (como em Smalltalk ou Java)
ou múltiplas hierarquias de classes como em C++. Podemos também escolher entre
implementar um sistema reflexivo definindo meta-classes ou usar as classes apenas como
fábricas de instâncias. Como esperado, podemos também definir múltiplas hierarquias de
protótipos. Tanto as hierarquias de classes como as hierarquias de protótipos podem usar
apenas herança simples ou recorrer à herança múltipla. Esta flexibilidade na definição
de sistemas de objectos é importante na utilização do Logtalk como ferramenta de
aprendizagem da programação orientada para objectos.

xxi

Programação dirigida por eventos

A linguagem Logtalk integra a programação dirigida por eventos com a programação
orientada para objectos. A chave para esta integração é interpretarmos o envio de
uma mensagem como o único evento que pode ocorrer num programa. Podemos assim
reinterpretar os conceitos de evento, monitor, notificação da ocorrência de um evento e
método para processamento de um evento em termos de objectos, mensagens e métodos.
Desta forma podemos escrever código usando os conceitos da programação dirigida por
eventos sem abandonar o paradigma da programação orientada para objectos.

Da experiência de programação em Logtalk na implementação de relações complexas
de dependências entre objectos emergem dois resultados importantes. Estes resulta-
dos não são espećıficos à linguagem Logtalk, aplicando-se a outras linguagens de pro-
gramação orientada para objectos. Em primeiro lugar, a programação dirigida por even-
tos é uma caracteŕıstica essencial às linguagens de programação orientada para objectos
para minimizar o acoplamento entre objectos e para maximizar a sua coesão interna em
aplicações que implicam relações de dependências entre o estado dos objectos partici-
pantes. Em segundo lugar, os conceitos de evento e monitor devem ser implementados
como primitivas das linguagens de programação. Este requisito é essencial em termos de
desempenho, o que inviabiliza a implementação destes conceitos ao ńıvel da aplicação.
O suporte nativo para eventos e monitores é uma condição necessária para o uso efectivo
da programação dirigida por eventos na resolução de problemas.

Composição baseada em categorias

As categorias são a base da programação baseada em componentes em Logtalk. Uma
categoria permite o encapsulamento de unidades funcionalmente coesas de código que
podem ser importadas por qualquer objecto. Uma categoria pode assim ser vista como
um conceito dual do conceito de protocolo. O uso de categorias traduz-se por vários
benif́ıcios ao ńıvel do desenvolvimento de programas: compilação incremental, actua-
lização de um objecto — sem o recompilar — através de actualização das categorias
importadas e o redesenho de objectos complexos através da sua separação em compo-
nentes.

A composição baseada em categorias é uma forma de reutilização de código que
complementa a composição baseada em variáveis de objecto e herança. As categorias
implementam uma forma de composição em que a interface da categoria passa a fazer
parte da interface do objecto que a importa. Isto contrasta com o que acontece na
composição baseada em variáveis de objecto, mas é similar ao que acontece na utilização
de mecanismos de herança.

O conceito de categoria não depende de nenhuma caracteŕıstica espećıfica e única
da linguagem Logtalk. As categorias são compiladas utilizando as mesmas tecnologias
usadas na compilação de objectos, com algumas funcionalidades a exigirem a utilização
de ligação dinâmica entre mensagens e métodos. Podemos assim implementar o conceito
de categorias noutras linguagens para as dotar de suporte para a programação baseada
em componentes. O suporte em Logtalk para importação privada, protegida e pública de
categorias estende a funcionalidade deste conceito. Através da aplicação dos prinćıpios
da programação baseada em componentes, o uso de categorias constitui uma alternativa
de implementação para projectos que usam herança múltipla que pode ser aplicada no
contexto de linguagens que apenas suportam herança simples.

xxii Extended abstract in Portuguese

Programação reflexiva

A linguagem Logtalk herda as caracteŕısiticas de meta-programação da linguagem Pro-
log, as quais representam uma forma de programação reflexiva. A estas caracteŕısiticas a
linguagem Logtalk acrescenta o suporte para programação reflexiva estrutural e compor-
tamental. A programação reflexiva é normalmente suportada através da programação
das construções de uma linguagem usando a própria linguagem. No caso do Logtalk, a
programação reflexiva é suportada por predicados pré-definidos, métodos pré-definidos
e mecanismos de execução que não são programados em Logtalk. Isto implica que al-
gumas das caracteŕısticas da linguagem como, por exemplo, os mecanismos de envio de
mensagens ou os mecanismos de herança, não podem ser redefinidos pelo programador.
Esta limitação tem contudo como contrapartida a possibilidade de optimizarmos, em ter-
mos de desempenho, todas as caracteŕısticas da linguagem que suportam a programação
reflexiva.

O Logtalk suporta a programação reflexiva estrutural através de um conjunto de
predicados pré-definidos que permitem a enumeração de entidades, das suas propriedades
e das suas relações com outras entidades e através de um conjunto de métodos pré-
definidos que permitem enumerar os predicados de um objecto e as proriedades de cada
predicado. Estes predicados e métodos pré-definidos podem ser aplicados a protótipos,
instâncias e classes.

O Logtalk suporta a programação reflexiva comportamental através da programação
dirigida por eventos. Assim sendo, estamos restringidos a computações sobre as men-
sagens trocadas entre objectos. Apesar disso, a utilização de eventos permite a definição
fácil de aplicações reflexivas como sejam, por exemplo, os depuradores.

A linguagem Logtalk suporta ainda a programação reflexiva através da definição de
meta-classes. Cada classe pode ter a sua meta-classe como em Smalltalk ou partilhar
uma meta-classe com outras classes. Podemos ainda definir meta-classes para todas
as classes ou apenas para algumas. Desta forma a linguagem suporta praticamente
qualquer tipo de sistema que use meta-classes.

Documentação de programas

A importância especial conferida em Logtalk à documentação de programas tem a sua
origem nas ideias de literate programming. O suporte nativo em Logtalk para a do-
cumentação de programas difere da maioria das linguagens de programação em quatro
pontos importantes:

• Os ficheiros que contém a documentação de uma entidade são automaticamente
gerados quando esta é compilada.

O Logtalk usa uma única ferramenta — o compilador da linguagem — para compilar
uma entidade e, em simultâneo, extrair a documentação. Com a ajuda de alguns pro-
gramas escritos em linguagens de automação, exemplos dos quais são distribúıdos com
o compilador, reunir e pós-processar os ficheiros de documentação é uma tarefa simples.

• Os ficheiros de documentação são ficheiros XML válidos. Estes ficheiros contêm
toda a informação sobre uma entidade que pode ter relevância em termos de
documentação tal como, por exemplo, as relações da entidade com outras entidades
e os predicados declarados pela entidade.

xxiii

O formato XML permite representar informação de documentção sem haver necessidade
de nos preocupar com a forma como essa informação irá ser formatada e apresentada.
Um ficheiro XML pode ser facilmente convertido para formatos finais como o PDF (para
imprimir) ou o HTML (para visualização no computador). É também posśıvel processar
os ficheiros XML para outros fins como, por exemplo, recolher dados sobre métricas de
programas.

• A estrutura dos ficheiros de documentação faz parte da especificação da linguagem,
juntamente com as directivas de documentação de entidades e predicados.

Por outras palavras, a documentação de programas é encarada como uma parte essencial
da especificação da linguagem Logtalk.

• Toda a informação de documentação é expressa usando a linguagem Logtalk. Não
existe uma linguagem adicional para documentação que necessite de ser dominada
para podermos documentar programas.

As directivas de documentação do Logtalk podem ser estendidas pelo programador para
representar informação arbitrária que não possa ser deduzida automaticamente a partir
da compilação de uma entidade. Esta abordagem difere assim de outras linguagens de
programação em que a documentação de programas recorre a comentários especialmente
formatados.

Logtalk como ferramenta de ensino

O Logtalk foi utlizado na UBI (Universidade da Beira Interior) no ensino da programação
orientada para objectos a alunos de licenciatura. Foi também utilizado como exemplo
de uma extensão ao Prolog no ensino da programação em lógica. Esta experiência
de ensino teve resultados interessantes. As linguagens mais comuns de programação
orientada para objectos como o C++ ou o Java são baseadas em classes, as quais herdam
sintaxe e conceitos de linguagens imperativas como o C. Estas linguagens requerem que
conceitos como a alocação estática e dinâmica, a tipagem dos argumentos dos métodos,
a importação de bibliotecas e outros sejam compreeendidos pelo aluno de modo a este
poder escrever os programas mais simples. Estes conceitos são secundários e distraiem da
aprendizagem de conceitos fundamentais como o encapsulamento, o envio de mensagens
ou a herança. Em contraste, o Logtalk encapsula predicados, eliminando a necessidade
de explicar os conceitos de métodos e variáveis antes de se definir simplesmente um
predicado e enviar a respectiva mensagem. O suporte do Logtalk para protótipos e
classes permite-nos podemos ensinar conceitos básicos usando simples hierarquias de
protótipos antes de explicarmos a diferença entre classes e instâncias e entre relações
de especialização e instanciação. Não temos palavras-chave como, por exemplo, main,
static, void, include ou import a desviar a atenção do aluno de conceitos básicos
ilustrados por simples exemplos. Não existe também um ambiente de desenvolvimento
sofisticado como em Smalltalk, ao qual o aluno tem de se adaptar antes de poder escrever
os exemplos mais elementares. Um editor de texto basta para escrever os primeiros
programas em Logtalk. Para estudantes com conhecimentos básicos de programação
em Prolog, a linguagem Logtalk é uma ferrementa ideal para uma transição suave da
programação em lógica para a programação orientada para objectos. Tal deve-se quer ao
uso de sintaxe e semântica derivadas do Prolog, quer devido à extensa gama de sistemas
orientados para objectos suportados pelo Logtalk.

xxiv Extended abstract in Portuguese

Números da distribuição da linguagem

Nos últimos dois anos o Logtalk foi descarregado da Internet uma média de 270 vezes
por mês (9 vezes por dia). O sistema é ainda distribúıdo com o compilador Prolog YAP.
As novas versões são em geral apenas anunciadas na lista de distribuição do Logtalk
(cerca de 70 subscritores) e nas páginas do serviço Freshmeat (dedicado ao anúncio de
software livre; cerca de 10 subscritores adicionais registados por esta via). Ponteiros
para as páginas do Logtalk na Web figuram em cerca de uma centena de páginas de
terceiros, que incluem desde páginas de recursos de programação até páginas pessoais de
outros investigadores. Estes números da distribuição do Logtalk são modestos, mesmo
se comparados com a dimensão da comunidade de programadores em Prolog. Eles
mostram, no entanto, que existe um interesse neste tipo de extensões ao Prolog. Estes
números revelam também que um maior esforço terá de ser feito na divulgação da
linguagem.

Trabalho futuro

O desenvolvimento a curto prazo da linguagem Logtalk inclui tornar a linguagem mais
atractiva para potenciais utilizadores, melhorando a documentação, a biblioteca de en-
tidades e os exemplos que acompanham o compilador. Um dos objectivos principais é
melhorar o suporte para o ensino dos conceitos da programação orientada para objectos
aos alunos de licenciatura.

Os planos de desenvolvimento a médio prazo incluem a publicação dos resultados
desta tese e o melhoramento da tecnologia utilizada no compilador actual do Logtalk.
O trabalho desenvolvido deverá ser publicado em revistas técnicas e cient́ıficas que de-
screvam os principais resultados obtidos. Nomeadamente, a programação por compo-
nentes através do uso de categorias, o suporte simultâneo de classes e protótipos e
a integração entre a programação orientada para objectos e a programação dirigida
por eventos. No tocante ao desenvolvimento do compilador, o seguinte trabalho está
planeado:

• O suporte de versões antigas de compiladores Prolog será abandonado, tornando
a manutenção do Logtalk mais fácil e permitindo tirar partido de caracteŕısticas
apenas dispońıveis em versões recentes de compiladores Prolog.

• O desempenho do envio de mensagens será optimizado através do uso, sempre que
posśıvel, de ligação estática entre mensagens e métodos.

• Uma nova implementação será desenvolvida modificando um compilador Pro-
log open-source de modo a obtermos uma versão autónoma do Logtalk. Esta
versão contituirá uma implementação alternativa, complementando, mas não subs-
tituindo, a versão corrente da implementação do Logtalk através de um pré-
processador.

• Um conjunto de testes será desenvolvido para ajudar a certificar a compatibilidade
de compiladores Prolog com o Logtalk.

Um objectivo a longo prazo é conseguir que o Logtalk seja a norma de facto para
a programação orientada para objectos em Prolog. Um dos principais obstáculos a
ultrapassar é a percepção dos sistemas de módulos como solução suficiente para os
problemas de engenharia de software em aplicações escritas em Prolog.

Preface

The first time I felt the need for strong encapsulation features in Prolog was during my
final year undergraduate’s project, in 1989. I was working on explanation-based learning
and, as my work progressed, typical software engineering problems started to slow me
down to a point where most changes would take weeks to implement. While seeking a
solution, it became obvious that I needed a way to encapsulate code and define interfaces
that would help me to deal with the increasing complexity of my application. Some
Prolog compilers implemented module systems, but there wasn’t one agreed standard.
At the time, each compiler used its own implementation, a big handicap when writing
portable code. Besides, my own computer science degree also lacked any object-oriented
programming or software engineering classes.

I started to learn more about object-oriented programming soon after my graduation,
in December 1989. After reading some papers on the design of Smalltalk, I decided that
the best way for me to learn object-oriented programming was to build my own object-
oriented language. As Prolog was always my favorite language, I decided to extend it
with object-oriented features. Eventually, this work has led me to two generations of
the Logtalk system. The Logtalk name is a tribute to Smalltalk, where the “Log” prefix
refers to Logic.

The first Logtalk generation was developed while doing research work for my Master’s
thesis. I presented this work at a conference in September 1994 and released the first
final public version in February 1995. The focus of this first system was to learn and
experiment how to implement a class-based language. I also wanted to learn more about
building reflexive systems. Although most users liked the ideas behind Logtalk, the lack
of a preprocessor or compiler providing some level of syntactic sugar resulted in a system
harder to learn and to use than necessary.

Another issue was the design choice of building a class-based system. I soon found
that the concepts of class and instance were not a good alternative to the use of module
systems for implementing libraries of predicates. Prototypes would have been a better
option here, but my inexperience with prototype systems led me to postpone an imple-
mentation of this kind of system. At that time, it was also unclear to me how prototypes
and classes could fit together in one language.

I also wanted to play around with and learn more about modern object-oriented
programming language features, such as the separation of interface from implementation,
parametric objects, and C++ like visibility rules. The big question was, as always,
how these concepts would fit in a logic-programming context. In January of 1998, I
started working on my Ph.D. program by designing and implementing a new system
from scratch.

Based on feedback by early users and on subsequent work, the first development
version of the second generation of Logtalk was released for registered users in July of

xxv

xxvi Preface

1998, followed by the first public beta in October 18, 1998. The final version went public
on February 9, 1999 (the detailed history of Logtalk development can be found in the
release notes distributed with the system).

I liked the Logtalk name, so I decided to keep it on the new system. This was a
somewhat controversial decision among advisors and users. Many felt that, because I
was building a new system from scratch, keeping the same name would lead people to
believe that Logtalk 2.x was just the next version of Logtalk 1.x. Of course, this kind of
decision is not uncommon in computer systems (the Mach micro-kernel comes to mind).
Both systems share many ideas and goals but programs written for one system are not
compatible with the other. However, conversion from the first system to the second can
easily be accomplished in most cases.

The second generation of Logtalk was also a consequence of the desire to have a
friendlier system, with a very smooth learning curve, bringing Logtalk programming
closer to traditional Prolog programming. There were, of course, other important
changes that resulted in a more powerful and pleasant system.

Logtalk 1.x releases occurred at a time where object-oriented programming was
hyped everywhere, and that fact arguably contributed to its divulgation. By the time
Logtalk 2.x came out, much of that hype had subsided, leaving many people disap-
pointed by the once touted promises of the object-oriented technology. This reflected
on the recent years drop of the number of researchers working in object-oriented logic
programming systems, and in the number of Prolog object-oriented extensions being
actively developed and supported. This is somehow ironic as Logtalk 2.x is a much
better and mature system than any version of Logtalk 1.x ever was.

Convincing Prolog implementers and vendors to adopt an object-oriented extension
to Prolog proved to be difficult. Most of them are willing to provide help in porting
Logtalk, but, so far, the system is only distributed with the YAP compiler, only as a
library, and not fully integrated with the compiler. Furthermore, the recent approval
of the ISO standard for the Prolog module system also means that the official solution
to Prolog software engineering problems is a technology that has been long deprecated
in favor of object-oriented alternatives. Nevertheless, for some applications, modules
are a good enough solution and, as such, they divert people from trying, learning, and
developing more powerful and versatile solutions. It remains to be seen if people will
favor ISO compliance or choose to work on alternative solutions like object-oriented sub-
systems. It does not make much sense to expect that a Prolog implementer will equally
support two concurrent encapsulation mechanisms. However, even if a Prolog vendor
embraces an object-oriented extension like Logtalk, module systems, will most likely,
continue to be supported to ensure backward compatibility with older Prolog code. I
hope that this thesis will be considered a worthy contribution for helping shaping the
future of logic programming languages, and of Prolog in particular.

Paulo Moura
University of Beira Interior
May 2003

Contents

Acknowledgements ix

Abstract xi

Extended abstract in Portuguese xiii

Preface xxv

Contents xxvii

Introduction 1
Goals . 2

Scientific goals . 2
Technical goals . 3

Work methodology . 5
Reader background . 6
Thesis outline . 6

1 Objects 9
1.1 Logtalk object concept . 9

1.1.1 Object-oriented concepts . 9
1.1.2 Objects, classes, and prototypes 10
1.1.3 Logtalk as a neutral, unbiased object-oriented language 11

1.2 Related work . 12
1.2.1 Prolog object-oriented extensions 12
1.2.2 Why developing Logtalk? . 15
1.2.3 Prolog module systems . 17

1.3 Working with objects . 18
1.3.1 Defining a new object . 18
1.3.2 Defining object hierarchies . 19
1.3.3 Inheritance . 20
1.3.4 Creating a new object at runtime 22
1.3.5 Abolishing dynamic objects . 23
1.3.6 Object directives . 23

1.4 The pseudo-object user . 25
1.5 Finding about objects . 25

1.5.1 Finding defined objects . 25
1.5.2 Object relations . 25

xxvii

xxviii Contents

1.5.3 Object properties . 26
1.6 Examples . 26

1.6.1 Towers of Hanoi . 26
1.6.2 A reflective class-based system 27
1.6.3 Geometric shapes . 28

1.7 Parametric objects . 33
1.7.1 Related work . 34
1.7.2 Accessing object parameters . 36
1.7.3 Parameter passing . 37
1.7.4 Examples . 37

1.8 Logtalk as a prototype language . 41
1.8.1 Object representation . 41
1.8.2 Object creation and evolution . 41
1.8.3 Inheritance and life-time sharing between objects 42
1.8.4 Extensions, delegation and sharing 42

1.9 Logtalk as a class-based language . 42
1.9.1 Definition of classes and instances 42
1.9.2 Methods and variables . 43
1.9.3 Class interfaces . 43
1.9.4 Component-based programming 43
1.9.5 Class hierarchies . 43
1.9.6 Metaclasses . 43
1.9.7 Abstract classes . 43

1.10 Summary . 44

2 Control constructs 47
2.1 Message sending . 47

2.1.1 Message sending operators . 47
2.1.2 Messages to objects . 48
2.1.3 Broadcasting . 48
2.1.4 Messages to self . 49
2.1.5 Calling redefined predicates . 50

2.2 Calling external code . 50
2.3 Control constructs and metapredicates as messages 51
2.4 Message processing . 52

2.4.1 Execution context . 52
2.4.2 Closed-world assumption . 53
2.4.3 Exception handling . 53

2.5 Message delegation . 53
2.6 Summary . 54

3 Predicates 55
3.1 Predicate declarations . 55

3.1.1 Definitions . 55
3.1.2 Scope directives . 56
3.1.3 Mode directive . 57
3.1.4 Metapredicate directive . 59
3.1.5 Discontiguous directive . 64

Contents xxix

3.1.6 Dynamic directive . 64
3.1.7 Documenting directive . 65
3.1.8 Redeclaration of inherited predicates 65

3.2 Predicate definitions . 65
3.3 Redefinition of inherited predicates . 66

3.3.1 Public, protected, and private inheritance 66
3.3.2 Overriding inherited predicate definitions 67
3.3.3 Specializing inherited predicate definitions 68

3.4 Definite clause grammars . 71
3.5 Built-in methods . 72

3.5.1 Execution context methods . 72
3.5.2 Database methods . 74
3.5.3 Reflection methods . 78
3.5.4 All solution methods . 81
3.5.5 Event handler methods . 81
3.5.6 Definite clause grammar parsing methods 81

3.6 Built-in predicates . 82
3.7 Representing object state and behavior 82

3.7.1 Instance methods . 83
3.7.2 Class methods . 85
3.7.3 Instance variables . 85
3.7.4 Class variables . 88
3.7.5 Property sharing versus value sharing 88

3.8 Summary . 92

4 Protocols 93
4.1 Logtalk protocol concept . 93

4.1.1 Related work . 93
4.2 Working with protocols . 94

4.2.1 Defining a new protocol . 94
4.2.2 Protocol hierarchies . 95
4.2.3 Creating a new protocol at runtime 97
4.2.4 Abolishing dynamic protocols . 98
4.2.5 Protocol directives . 98
4.2.6 Implementing protocols . 98

4.3 Finding about protocols . 100
4.3.1 Finding defined protocols . 100
4.3.2 Protocol relations . 100
4.3.3 Protocol properties . 101

4.4 Summary . 101

5 Categories 103
5.1 Code reusing . 103

5.1.1 Inheritance-based reusing . 103
5.1.2 Object variable-based composition reusing 104
5.1.3 Category-based reusing . 104

5.2 Logtalk category concept . 104
5.2.1 Category properties . 105

xxx Contents

5.2.2 Implementation . 106
5.3 Related work . 107

5.3.1 Mixins . 107
5.3.2 Smalltalk categories . 108
5.3.3 Objective-C categories . 108
5.3.4 Ruby modules . 108
5.3.5 Prototype languages . 108

5.4 Working with categories . 109
5.4.1 Defining a new category . 109
5.4.2 Creating a new category at runtime 110
5.4.3 Abolishing dynamic categories 110
5.4.4 Category directives . 110
5.4.5 Importing categories . 112
5.4.6 Handling dynamic predicates . 113

5.5 Finding about categories . 113
5.5.1 Finding defined categories . 113
5.5.2 Category relations . 114
5.5.3 Category properties . 114

5.6 Examples . 114
5.6.1 Composing definite clause grammars 115
5.6.2 Splitting an object in categories 116
5.6.3 Categories as a complementary composition tool 117
5.6.4 Hierarchy relations . 120
5.6.5 Monitoring category . 121
5.6.6 Points . 122

5.7 Summary . 129

6 Events 133
6.1 Events and monitors as language primitives 133

6.1.1 Event definition . 133
6.1.2 Monitor definition . 134
6.1.3 Event registration . 134
6.1.4 Event-driven programming . 135
6.1.5 Related work . 135

6.2 Message sending and event generation 139
6.3 Communicating events to monitors . 139

6.3.1 Defining event handlers . 140
6.3.2 Event handler semantics . 141
6.3.3 Activation order of event handlers 142

6.4 Event registration . 142
6.4.1 Defining new events . 142
6.4.2 Abolishing defined events . 142
6.4.3 Finding defined events . 142

6.5 Examples . 143
6.5.1 Tracing messages . 143
6.5.2 Profiling . 144
6.5.3 Constrained object relations: a stack of blocks 145

6.6 Summary . 150

Contents xxxi

7 Documenting Logtalk programs 153
7.1 Documenting language . 153
7.2 Documenting file format . 154
7.3 Documenting directives . 155

7.3.1 Entity documenting directives . 155
7.3.2 Predicate documenting directives 156

7.4 Processing and viewing documenting files 157
7.5 Summary . 158

8 Implementation 161
8.1 Design choices . 161

8.1.1 Logtalk as a Prolog preprocessor 161
8.1.2 Compatibility and portability . 162
8.1.3 Dynamic binding . 163
8.1.4 Static relations between entities 163
8.1.5 Independent entity compilation 163
8.1.6 No predefined entities . 163
8.1.7 One entity per source file . 163
8.1.8 Distribution and use license . 164

8.2 Implementation overview . 164
8.2.1 Compiling and loading source files 164
8.2.2 Compiler options . 165
8.2.3 Compiler and runtime error handling 169
8.2.4 Parsing and translating source files 169

8.3 Identifiers, prefixes, functors, and tables 169
8.3.1 Entity prefix . 170
8.3.2 Entity tables . 170
8.3.3 Predicate tables . 171
8.3.4 Linking clauses . 171
8.3.5 Entity functors clause . 172

8.4 Compiling predicate directives . 172
8.4.1 Static table of predicate declarations 173
8.4.2 Dynamic table of predicate declarations 173

8.5 Compiling predicate clauses . 174
8.5.1 Compiling clause heads . 174
8.5.2 Predicate definition tables . 175
8.5.3 Compiling clause bodies . 176

8.6 Compiling entity relations . 177
8.6.1 Compiling protocol relations . 178
8.6.2 Compiling category relations . 179
8.6.3 Compiling prototype relations . 179
8.6.4 Compiling instantiation and specialization relations 182
8.6.5 Compiling protected and private relations 185

8.7 Runtime support for events and monitors 187
8.8 Limitations . 188

8.8.1 Prolog-related limitations . 188
8.8.2 Operating system-related limitations 189

8.9 Porting . 190

xxxii Contents

8.9.1 Porting results . 190
8.9.2 Porting reliability . 191
8.9.3 Porting issues . 192

8.10 Summary . 196

Conclusions 197
Logtalk as a Prolog object-oriented extension 197

Logtalk compatibility . 198
Logtalk syntax . 198
The role of objects in logic programming 198
Implementation solutions for object-oriented concepts 198
Objects as a replacement for modules 198
Working environment and other practical matters 199

Logtalk as an object-oriented programming language 200
Predicates as both variables and methods 200
Static and dynamic language elements 200
Support for both prototypes and classes 200

Event-driven programming . 201
Category-based composition . 201
Reflection . 202
Program documentation . 202
Logtalk in the classroom . 203
Logtalk in numbers . 204
Future work . 204

A Logtalk Grammar 207
A.1 Entity types . 207
A.2 Entity definitions . 207

A.2.1 Object definition . 207
A.2.2 Category definition . 208
A.2.3 Protocol definition . 209

A.3 Entity relations . 209
A.3.1 Implemented protocols . 209
A.3.2 Extended protocols . 209
A.3.3 Imported categories . 210
A.3.4 Extended objects . 211
A.3.5 Instantiated objects . 211
A.3.6 Specialized objects . 212
A.3.7 Entity relation scope . 212

A.4 Entity identifiers . 213
A.4.1 Object identifiers . 213
A.4.2 Category identifiers . 214
A.4.3 Protocol identifiers . 214

A.5 Directives . 215
A.5.1 Entity directives . 215
A.5.2 Predicate directives . 216

A.6 Clauses and goals . 219
A.6.1 Clauses . 219

Contents xxxiii

A.6.2 Goals . 220
A.7 Entity properties . 221
A.8 Predicate properties . 221

B Logtalk language reference 223
B.1 Directives . 223

B.1.1 Entity directives . 223
B.1.2 Predicate directives . 231

B.2 Built-in predicates . 234
B.2.1 Enumerating entities . 234
B.2.2 Enumerating entity properties 236
B.2.3 Creating new entities . 237
B.2.4 Abolishing entities . 239
B.2.5 Entity relations . 240
B.2.6 Event handling . 244
B.2.7 Compiling and loading entities 246
B.2.8 Flags . 249
B.2.9 Others . 250

B.3 Built-in methods . 251
B.3.1 Local methods . 251
B.3.2 Reflection methods . 253
B.3.3 Database methods . 254
B.3.4 All solutions methods . 259
B.3.5 Event handler methods . 261
B.3.6 Definite clause grammar parsing methods 262

B.4 Control constructs . 262
B.4.1 Message sending . 263
B.4.2 Calling external code . 265

C Logtalk XML documenting files 267
C.1 Logtalk XML documenting files structure 267

C.1.1 Logtalk XML DTD . 267
C.1.2 Logtalk XML Schema . 268

C.2 Example Logtalk XML documenting file 273
C.3 Example XSLT processing files . 275

C.3.1 Converting documenting files to HTML 275
C.3.2 Converting documenting files to PDF 280

Bibliography 291

Index 299

xxxiv Contents

Introduction

Why developing Logtalk? The ultimate answer is, of course, for the fun of it. However,
some readers might expect a different kind of answer. There are a number of reasons,
consequence of the current state of affairs of both logic programming and object-oriented
programming.

Regarding logic programming, Prolog, its most widespread language, born in 1972
[1], still lacks a standard library and a feature set suitable for programming in the large.
The first Prolog ISO standard [2], concerning the core aspects of the language, was
published in 1995, and is being adopted at a slow pace by the Prolog community. The
second ISO standard [3], concerning the module system, was published in 2000 and is
being basically ignored by most of the Prolog community. Long gone are the days of the
Japanese 5th Generation Computer System Project [4], centered on the promises of logic
programming as the silver bullet. Today, Prolog is a niche language. Logic was dropped
as a programming paradigm from the first draft of the 2001 ACM/IEEE Computer
Science Curricula [5], and was only re-introduced in the curricula final report [6] after
much pressure from the logic programming community [7]. There are, of course, many
reasons for the current state of logic programming in general, and Prolog in particular.
Nevertheless, sociologic and political reasons aside, Prolog technical handicaps, such as
the inexistence of standard libraries, standard foreign language interfaces, and powerful
encapsulation mechanisms, make it an uphill battle to use the language and the logic
programming paradigm for teaching, researching, or commercial software development.

Regarding object-oriented programming, the field is strongly biased towards class-
based systems and the particular implementation of object-oriented concepts in a few
languages, notably, C++ [8] and Java [9]. These languages, like any other language,
represent a specific set of design decisions on how to implement broad object-oriented
concepts. For example, these languages take for granted dichotomies such as vari-
able/method, state/behavior, or instance/class. They present classes as static entities,
and objects as runtime dynamic entities. Support for reflective computing is either
minimal (C++ runtime type inference), or provided as a library, instead of being a
core language feature (Java Reflection API). Not only other design decisions are pos-
sible, we can actually lift some of them to obtain a more general language by inte-
grating object-oriented programming with logic programming. Unfortunately, the 2001
ACM/IEEE Computer Science Curricula cited above, most under-graduated courses,
and many books, present class-based languages as almost synonymous of object-oriented
programming. Prototype-based languages [10] are only a margin note, if that much, in
most object-oriented programming courses and books. Innovative concepts pioneered
in other languages and programming paradigms are yet to be found in mainstream
object-oriented languages. One example is the concept of daemon, common in Arti-
ficial Intelligence languages. This concept is a cornerstone of the Logtalk support for

1

2 Introduction

event-driven programming. Another example is the code’s dual role of as both data and
procedure found in logic and functional programming languages.

Goals

The major goal of this thesis work is the design, implementation, and documentation
of an object-oriented logic programming language, named Logtalk, constructed as an
object-oriented extension of the Prolog logic programming language. Its design aims
to develop a language with a smooth learning curve for Prolog programmers, providing
much needed powerful encapsulation features. Its implementation aims to demonstrate
the feasibility of all language features, showing how they can be compiled in a clean
and efficient way. Its documentation aims to provide a complete, clear, and detailed
specification such that others can use it as a reference for providing alternative imple-
mentations. In this context, there are two sets of more specific goals: scientific and
technical, which will be described next.

Scientific goals

The scientific goals of this thesis are the integration of the best features of logic pro-
gramming, object-oriented programming, and event-driven programming paradigms in
one language.

Integration of logic and object-oriented programming

Logtalk aims to bring together the main advantages of these two programming para-
digms. On one hand, objects allow us to work with the same set of concepts in the
successive phases of application development. On the other hand, logic programming
allows us to represent, in a declarative way, our knowledge of each object. All together,
objects and declarative programming allow us to shorten the distance between an appli-
cation and its problem domain. Adding objects to Prolog allows us to apply high-level
object-oriented development methodologies and metrics to logic programming. Objects
also provide logic programming languages, and Prolog, specifically, with several features
needed in large-scale software projects. In particular, objects add namespaces to the
traditional Prolog flat database, providing predicate encapsulation and data hiding, en-
hance code reusing trough inheritance and composition, and, coupled with protocols,
provide separation between interface and implementation.

Most Prolog object-oriented extensions available today are proprietary, commercial
products. Almost all are class-based systems. Some of them are tailored for specific
application areas. In contrast, Logtalk is an open-source project, aiming for broad
compatibility with Prolog compilers, for supporting a wider range of object-oriented
systems, and to be a general-purpose extension to Prolog.

Integration of event-driven and object-oriented programming

Event-driven programming enables the building of reactive systems, where computations
are triggered by the observation of occurring events. This integration thus complements
object-oriented programming, where computations are explicitly initiated by sending
messages to objects. It should be accomplished by reinterpreting the event-driven pro-
gramming concepts in terms of objects and messages and by an implementation that

Goals 3

minimizes any message sending performance penalties when events are not being used.
The basic idea is to define an event as the sending of a message to an object. The
user then dynamically defines which events are to be observed and sets up monitors
for them. This enables clean and elegant solutions that minimize object coupling and
maximize object cohesion. A good example is the representation of relations between
objects that imply constraints on the state of participating objects [11, 12, 13, 14]. An-
other example are reflective applications such as code debugging and code profiling [15].
Event-driven programming is also at the core of graphical user interfaces and operating
systems [16]. The notion of event-driven programming also has roots in the concept
of daemon found in Artificial Intelligence languages [17, 18]. Some object-oriented lan-
guages already support some sort of event-driven programming. For example, Smalltalk
[19] provides a limited form of this idea through its dependency mechanism, which is
implemented at the class level. Java provides a similar mechanism at the API level.
However, most widespread object-oriented languages used today, such as C++ or Java,
include no native support for event-driven programming at the language level. Logtalk
aims to demonstrate that event-driven programming not only can be nicely integrated
in an object-oriented language, but also is essential in many applications to avoid break-
ing object encapsulation and to avoid rewriting object code when reusing objects in
unforeseen applications.

Support for both prototype-based and class-based systems

Almost all object-oriented languages available today, are either class-based or prototype-
based [20], with a strong predominance of class-based languages. In particular, all cur-
rent mainstream object-oriented languages are class-based. However, prototypes pro-
vide a much better replacement for Prolog modules than classes. A prototype can be a
stand-alone object, not attached to any hierarchy, and therefore a convenient solution to
encapsulate code that will be reused by several unrelated objects. Prototypes are thus a
natural upgrade to the use of modules in applications where the concepts of instantiation
and specialization of class-based languages do not make sense. For other applications,
the forms of code reuse underlying the concepts of class and instance, are the best so-
lution. Each kind of system, with its strengths and drawbacks, is equally useful in the
context of an object-oriented logic programming language. As such, Logtalk aims to
provide equal support for classes and prototypes, including runtime support for both
prototype and class hierarchies in the same application. In fact, many Logtalk examples
and applications make use of prototypes, classes, and instances simultaneously.

Technical goals

In addition to the scientific goals stated in the previous section, there is also a set
of technical goals intended to give Logtalk feature-parity with current object-oriented
programming languages, to provide an easy migration path for Prolog programmers,
and to ensure broad compatibility with today’s Prolog compilers and ISO standards.

Support for multiple object hierarchies

Languages such as Smalltalk-80, Objective-C [21], and Java, define a single hierarchy
with a root class usually named Object. This makes it easier to ensure that all objects
share a common behavior. Unfortunately, this often results in lengthy hierarchies, where

4 Introduction

most inherited behavior is never used by descendant objects [22]. Moreover, a single
object hierarchy makes it difficult to express objects that are exceptional in some sense
when compared to other objects. Therefore, one of the Logtalk design goals is to provide
support for multiple, independent, object hierarchies. This goal is also a consequence of
the Logtalk support for both prototypes and class hierarchies.

Separation between interface and implementation

This is an expected feature of any modern high-level programming language. Logtalk
should provide support for separating interface from implementation in a flexible way,
enabling an interface to be implemented by multiple objects, and an object to implement
multiple interfaces. Surprisingly, this is not possible in the current ISO standard for
Prolog modules, where a module consists of a single module interface and zero or more
corresponding module bodies.

Private, protected, and public object predicates

Logtalk should support data hiding by implementing private, protected, and public ob-
ject predicates, and by adopting scope rules common to other object-oriented languages:
private predicates can only be called from the container object, protected predicates can
only be called from the container object and its descendants, and public predicates can
be called from any object. Note that the current ISO standard for Prolog modules does
not support data hiding. By using explicit module qualification, we can call any module
predicate as long as we know its name.

Private, protected, and public inheritance

This is a common feature of modern object-oriented languages such as C++ and Java,
and a natural extension of the predicate scope rules. Logtalk should support a general-
ized implementation of private, protected, and public inheritance, enabling us to restrict
the scope of inherited, implemented, or imported predicates.

Parametric objects

A parametric object is an object whose identifier is a compound term containing free
variables. These variables play the role of object parameters. Object predicates can then
be coded to depend on the parameter values. Object parameters can also be used to
represent object state that is set at creation time and will not be modified during object
lifetime, thus avoiding the use of destructive update methods for object initialization.
Parametric objects can be seen as a way of associating a set of predicates (the object
methods) with a compound term (the object identifier). Parametric objects are already
implemented and proved a valuable feature in some object-oriented logic programming
systems such as L&O [23] and SICStus Objects [24].

Smooth learning curve

Logtalk should be designed as a natural extension to Prolog, not a completely new,
radically different approach to logic programming. Logtalk should strive for a smooth

Work methodology 5

learning curve by adopting, whenever possible, standard Prolog syntax, by using pro-
gramming constructs familiar to Prolog users, and by allowing incremental learning and
use of most of its features.

Compatibility with most Prolog compilers and the ISO standard

Logtalk should be designed to be compatible with most Prolog compilers and, specifi-
cally, with the ISO Prolog standard. It should run on most computer systems support-
ing a modern Prolog compiler. The language design should minimize implementation-
dependent features to ensure broad portability of Logtalk programs across Prolog com-
pilers and operating systems. In fact, Logtalk should be regarded as an ideal tool for
writing portable programs: any operating-system dependent code can be encapsulated
inside objects implementing clearly defined cross-platform protocols.

Work methodology

I felt compelled to describe my working methodology during the design of Logtalk. I
believe that the results of this work are a consequence, not only of the stated goals, but
also of the way I pursued those goals. While doing my research work, I tried to comply
with the following guidelines:

• Implement all language features.

• Experiment by writing examples that take advantage of every provided feature.

• Port the language compiler to as many operating systems and Prolog compilers as
possible.

• Collect user feedback by regularly releasing public versions of the language com-
piler, examples, and documentation.

• Compare Logtalk solutions for common and classical problems to solutions imple-
mented in other object-oriented languages.

• Avoid writing about unimplemented features unless they can be proved feasible
by sketching a possible implementation.

• Teach the language to undergraduate students already familiar with some pro-
gramming languages. Use their feedback to improve the language and its docu-
mentation.

Some of the consequences of this methodology are:

• A decision must be made between implementing a prototype, proof-of-concept
system, or implementing a feature-complete, robust system. The later option was
chosen.

• Good documentation is essential to attract Logtalk users and developers.

• Good examples are essential to help new users learn how to write programs in
Logtalk.

6 Introduction

• Implementing, describing, and exemplifying language features provides hard evi-
dence of the simplicity and feasibility of our ideas.

• Releasing public versions of the Logtalk system implies making decisions on what
software licenses to adopt and, consequently, on what kind of support we will find
ourselves obliged too.

Reader background

On this thesis, I assume that the reader have a working knowledge of both logic pro-
gramming and object-oriented programming. I do no attempt to explain the basics of
any of these programming paradigms. As in much multi-disciplinary work, most read-
ers will feel more comfortable with one programming paradigm that with the other. I
hope to convince them that much is to be gained by integrating these two programming
paradigms into the same language.

Describing the design and development of the Logtalk language in the linear way
imposed by a thesis is not an easy task. Therefore, sometimes I will need to refer to
concepts that will only be fully explained in a later chapter. However, a basic knowledge
of both logic programming and object-oriented programming should be enough to get
the reader through this thesis.

Thesis outline

The remaining of this thesis is structured as follows:

Chapter 1 presents the Logtalk concept of object (including parametric objects), ex-
plains the language support for both class-based and prototype-based hierarchies,
compares Logtalk to other object-oriented extensions and to ISO Prolog modules,
explains the rules for protocol and implementation inheritance, and illustrates the
use of objects through several examples.

Chapter 2 describes the control constructs defined in Logtalk for message sending,
message broadcasting, predicate specialization, and for bypassing the pre-processor
when compiling predicate definitions.

Chapter 3 explains how to declare, define, redefine, and specialize object predicates,
describes the built-in predicates and built-in methods defined in Logtalk, and
illustrates through examples how to implement common object-oriented concepts
using object predicates.

Chapter 4 describes the Logtalk concept of protocol, compares Logtalk protocols with
related concepts in other programming languages, explains how to define proto-
cols and protocol hierarchies, and illustrates the use of protocols through several
examples.

Chapter 5 explains the Logtalk concept of category (a first-class entity that encap-
sulates code that can be imported by any object), compares code reuse by using
categories with code reuse by using inheritance and instance-based composition,
and illustrates the use of categories through several examples.

Thesis outline 7

Chapter 6 shows how to integrate event-driven programming with object-oriented
programming, presents the Logtalk concepts of event and monitor, and describes
the Logtalk language support for event-driven programming.

Chapter 7 describes the Logtalk language support for representing documenting in-
formation about entities and predicates and how to automatically extract and
format such documentation.

Chapter 8 describes the implementation-specific Logtalk design goals, discusses the
issues found while porting Logtalk to several Prolog compilers and operating sys-
tems, and provides a high-level description of the current Logtalk language imple-
mentation.

Conclusions summarizes the major contributions of this thesis and presents a road-
map for future development.

Appendix A formally defines the Logtalk language syntax using a derivated Backus-
Naur Form notation.

Appendix B contains a complete description of all built-in predicates, built-in meth-
ods, directives, and control constructs of the Logtalk language.

Appendix C formally defines the format of the Logtalk automatically-generated en-
tity documenting files and presents some examples on how to transform these files
into printing and on-line viewing formats.

Some of the research work described in this thesis, such as the Logtalk language reference
and the Logtalk grammar, has been previously published in a technical report [25]. The
issues related to Logtalk porting, described in Chapter 8, have first been published
in a technical paper [26]. Some of the ideas behind Logtalk were first published in a
paper [27]. The current Logtalk implementation (that includes most of the programming
examples presented on this thesis) is available from the Logtalk web site [28].

Chapter 1

Objects

This chapter begins by presenting the Logtalk concept of object, followed by the defini-
tion of common object-oriented terms in the context of the Logtalk language. Secondly,
Logtalk is presented as a neutral language supporting several types of object-oriented
systems, including class-based and prototype-based ones. Thirdly, the definition of
objects and object hierarchies is explained, along with a description of built-in ob-
ject directives, built-in predicates for object handling, and built-in object reflection
predicates. Fourthly, some simple examples are presented, including class-based and
prototype-based solutions for the same programming problem. Next, Logtalk support
for parametric objects is described and illustrated through several examples. Finally,
Logtalk is characterized as both a class-based and as a prototype-based language.

1.1 Logtalk object concept

The Logtalk goal of adding objects to Prolog is the encapsulation and reuse of pred-
icates. As such, the issues of dynamic state in the context of logic programming are
not a research topic of this thesis. In most object-oriented programming languages, an
object is essentially a glorified dynamic data structure. From this point-of-view, objects
provide encapsulation of dynamic state. However, we can also view (the primary pur-
pose of) objects as a way of encapsulating and reusing code. In the case of Logtalk, an
object encapsulates directives and predicate clauses. Dynamic object state is available
using assert and retract built-in methods, but, as with dynamic predicates in Prolog
programming, it should be only used when strictly necessary.

Logtalk objects work as namespaces for the encapsulated predicates. This is an
important feature over the flat predicate database model of plain Prolog. Support
for namespaces allows us to reuse predicate names, simplifying the vocabulary of our
applications, and to partitioning our code in more manageable parts, essential in the
construction of large programs. By itself, namespaces is a feature already available
in Prolog using modules. However, as it will be demonstrated throughout this thesis,
objects provide several advantages over modules for encapsulating and reusing code,
while subsuming their functionality.

1.1.1 Object-oriented concepts

Designing a Prolog object-oriented extension implies defining the set of object concepts
that will be implemented. This set includes both core object concepts and comple-

9

10 Chapter 1. Objects

mentary and derivate concepts that depend on the design goals. Taking into account
the goals expressed in the previous chapter, the core object concepts must include:
support for both prototypes and classes, separation of interface from implementation,
and data hiding through the declaration of public, protected, and private predicates.
Complementary and derivate concepts include: multiple object hierarchies (partially a
consequence of the support for both classes and prototypes), parametric objects, and
public, protected, and private inheritance (complementing data hiding). The way these
concepts are implemented depends on the intended uses of the object-oriented extension.
In the case of Logtalk, the implementation of object-oriented concepts is guided by the
view of objects as encapsulation units. Thus, Logtalk emphasis is on the encapsulation
and reuse of predicates. Unlike other extensions, which are developed under different
goals, Logtalk does not try to bring to Prolog concepts of attributes and methods, de-
structive assignment primitives, typed slots, or similar concepts as found on common
object-oriented languages such as C++ or Java. A comparison between Logtalk and
other object-oriented extensions is included later in this chapter.

1.1.2 Objects, classes, and prototypes

In Logtalk, the terms object, prototype, parent, class, subclass, superclass, metaclass, in-
stance, and ancestor always designate an object. Different names are used to emphasize
the role that an object plays in a particular context. The role an object plays depends on
its relation with other objects. We use a term other than object when we want to make
the relationship with other objects explicit. As will be discussed later in this chapter,
prototypes, classes, and instances are characterized by different rulesets for accessing
and inheriting predicates. There are only three kinds of entities in Logtalk: objects,
protocols, and categories. Protocols encapsulate predicate declarations, enabling the
separation between interface and implementation. Categories encapsulate both predi-
cate declarations and definitions that can be imported by any object. Protocols and
categories will be fully discussed in Chapters 4 and 5, respectively.

Definitions

We start by defining informally a set of terms useful for the object classification that
will be used throughout this thesis:

object An encapsulation entity, characterized by an identity, a set of entity directives,
a set of predicate directives, and a set of predicate clauses. The identity of an
object is either an atom or a compound term. Logtalk objects can be either static
or dynamic, similar to Prolog code.

parametric object An object whose identity is a compound term containing free
variables, which can be used to parameterize the object predicates.

class An object that declares (and possibly defines) the predicates common to a set of
objects (its instances).

abstract class A class that cannot be instantiated and that is used to encapsulate
predicates that are inherited by other classes.

subclass A class that is a specialization (directly or indirectly) of another class.

1.1. Logtalk object concept 11

superclass A class from which another class is (directly or indirectly) a specialization.

instance An object whose predicates are declared by its classes (and by the super-
classes of its classes).

metaclass The class of a class, when it is interpreted as an object. Thus, metaclass
instances are themselves classes. In a reflexive system, any metaclass is also an
instance of some class.

prototype A self-describing object that declares (and possibly defines) its own predi-
cates. A prototype may extend or be extended by other prototypes.

parent A prototype that is extended by another prototype, thus defining a prototype
hierarchy.

ancestor A class or a parent declaring (and possibly defining) predicates that are used
by a descendant object. In class-based hierarchies, the ancestors of an instance are
its classes and their superclasses. In prototype-based hierarchies, the ancestors of
a prototype are its parents and their ancestors.

1.1.3 Logtalk as a neutral, unbiased object-oriented language

A major goal of Logtalk is to support both classes and prototypes. The strengths
and weaknesses of class-based and prototype-based languages has long been a research
topic (see, for example, [29, 30, 31, 32, 33]). Today, most object-oriented languages,
including the most widespread ones, are class-based. Prototype-based languages are a
minority, both in terms of market share and of mind share. Nevertheless, prototype and
classes provide some complementary features regarding code encapsulation and reuse.
Both interpretations of objects are useful in the context of an object-oriented logic
programming language.

Prototypes can be seen as self-describing objects. They can be defined as stand-alone
objects, not attached to any hierarchy. There is no need to create a class and instantiate
it in order to represent and use an object. Prototypes may be defined by stating what
is different from other prototype, using an extension mechanism. Singular objects and
exceptions are easily represented because what is different can be locally represented.
We only have a single hierarchical relation, making prototype hierarchies easy to grasp.
Unfortunately, it is not possible to encapsulate knowledge in an object only to be used
by other objects, not by the object itself. When we send a message to a prototype, the
lookup search starts in the object itself. If the object cannot answer the message, then
it is delegated to the prototypes that it extends. We can adopt conventions to represent
the equivalent of classes, but the very nature of prototype systems does not help to
enforce them. Prototypes are the most natural alternative to the use of Prolog modules.
For example, a module containing list-handling predicates can easily be replaced by a
prototype: exported module predicates become public prototype predicates.

A class represents an abstraction of the common characteristics of a set of objects.
As such, it enables easy representation of hierarchies of classification. A class enables
the encapsulation of knowledge to be reused by other objects, but the class itself as an
object. This can be either an advantage or a problem, depending on what we are try-
ing to represent. One of its drawbacks is the so-called “single-instance class” problem:
representing a unique object implies the definition of a class that has only one instance.

12 Chapter 1. Objects

This is cumbersome to implement. Classes can play the role of instance factories, handy
when we need to create several similar objects. Assume, for example, that we want to
represent the state space of classical problems such as the “missionaries and cannibals”
puzzle. A state space can be abstracted in a class that declares predicates for repre-
senting the initial state, the successors of a state, and the goal state. Class instances
will represent concrete problems by defining these predicates. In addition, the class
representing state spaces can be easily specialized by a class representing heuristic state
spaces.

From the point-of-view of Logtalk, the principal difference between classes and pro-
totypes is that their implied relations with other objects result in different forms of reuse
of the encapsulated predicates. In class-based languages, a distinction is made between
abstractions and concrete objects, resulting in two kinds of object relations: specializa-
tion relations between classes, and instantiation relations between classes and concrete
objects. In prototype-based languages, there is only one relation between objects, the
extension relation. The practical consequences of using either a class-based solution or
a prototype-based one will be exemplified later in this chapter.

Compiling objects

Supporting both classes and prototypes in the same language raises some questions with
respect to object compilation, mainly when to compile an object as a prototype and when
to compile an object as a class or as an instance. If an object extends another object,
it is compiled as a prototype. On the other hand, if an object specializes or instantiates
other objects, it is compiled as an element of class-based hierarchy. In the case of an
object that is not hierarchically related to any other object, it is always compiled as a
prototype. However, there is a problem when we try to define a class hierarchy similar
to the one in Java. In a non-reflective class-based hierarchy, the root class does not
instantiate or specialize any other class. Nevertheless, it must be compiled as a class
and not as a prototype. The solution is to use always a minimal reflective class-based
design, as illustrated later in this chapter.

1.2 Related work

In this section, comparisons are made between Logtalk and other Prolog object-oriented
extensions, and with Prolog module systems, including the ISO Prolog standard for
modules. Comparisons with other object-oriented languages are made through this
thesis whenever necessary.

1.2.1 Prolog object-oriented extensions

A comprehensive description of the most common Prolog object-oriented extensions can
be found in [34]. In recent years, some new extensions have been released. In this
section, a brief description of the most important features of current Prolog object-
oriented extensions is presented. Only Prolog object-oriented extensions that are being
actively maintained are covered here.

1.2. Related work 13

Quintus Objects

Quintus Objects [35] is a class-based object-oriented extension for the Quintus Prolog
[36] commercial compiler. In Quintus Objects, an object is an updatable data structure
whose slots can be declared as private or protected. The type of a slot can be either
a Prolog term or C-style type. Slots can be directly accessed without using message
sending. Getter and setter methods for slots are automatically created when objects
are compiled. Single and multiple inheritance are supported using static binding. As
most extensions, Quintus Objects works as a preprocessor, translating objects to Prolog
code at compile-time. Debugging is supported through a directive that enables tracing
of erroneous use of message sending.

SICStus Objects

SICStus Objects [37] is a prototype-based object-oriented extension that is included with
SICStus Prolog [24], a commercial compiler. It is implemented using modules. Object
predicates are public, so SICStus Objects does not provide data hiding. This extension
supports a concept of attribute, providing two built-in methods that enable efficient
access and definition of attribute values. Both message sending and message delegation
are supported. Although SICStus Objects is prototype-based, it also supports a concept
of instance. An instance is a light weight, efficient object that is initialized with a copy
of the attributes of a prototype, which works as its class. SICStus Objects supports
parametric objects.

Jinni

Jinni [38, 39] is a Java-based commercial Prolog system. It includes a class-based object-
oriented extension. It features multiple inheritance (using an algorithm that prevents
cycles), static binding, and the definition of constructors that are called at instance
creation-time (and automatically call the constructors of the superclasses). Jinni does
not support data hiding in its current version (i.e. all object predicates can be called). It
defines concepts of instance fields and class fields (shared instance fields) with predefined
setter and getter operations. An interesting feature is that classes may be located at
arbitrary locations on the Internet.

OPL

OPL [40] is a commercial class-based object-oriented programming extension for the
Amzi! Prolog compiler [41]. It supports multiple inheritance and dynamic reclassifica-
tion. It makes a distinction between services (methods) and attributes (whose names
must be atoms), defining built-in operations for setting, accessing, and deleting its val-
ues. Attributes can have multiple values. Class attributes work as shared instance
attributes. OPL defines a single metaclass for all classes. This metaclass defines a set
of general services, including debugging through tracing of message sending, application
initialization, and saving and restoring the state of an application to a disk file.

O’CIAO

O’CIAO [42, 43] is a set of libraries for class-based object-oriented programming in CIAO
Prolog [44, 45]. Both the extension and the Prolog compiler are open source projects.

14 Chapter 1. Objects

O’CIAO object-oriented programming model is based on the CIAO Prolog module sys-
tem. Classes are a special type of modules that can be instantiated. The syntax of
O’CIAO uses a mixture of object-oriented and module terminology. For example, public
predicates are declared using export/1 directives, but protected predicates are declared
through inheritable/1 directives (predicates are private by default). Predicate scope
declarations must be repeated in the subclasses. A class is required to provide an imple-
mentation for every declared public predicate. In addition, in order to allow a predicate
to be redefined in subclasses, we must explicitly use a virtual/1 predicate directive.
Constructor and destructors predicates can be explicitly declared; they are automat-
ically called when an instance is created and deleted, respectively. O’CIAO makes a
distinction between predicates that are attributes and predicates that represent meth-
ods. Attributes are used to represent the internal state of instances; they are restricted
to Prolog facts. Methods are static predicates defined in classes. O’CIAO supports
the definition of interfaces. These are similar to Java interfaces. In respect to inheri-
tance, O’CIAO supports single inheritance of implementation and multiple inheritance
of interfaces.

Minerva

Minerva [46] is a commercial Java-based Prolog implementation, tailored for web appli-
cations. Its latest version (Minerva 2.4) introduces a new class-based extension. This
extension is oriented to the encapsulation of dynamic state. Object creation methods
are automatically created when a class is compiled. Object state handling is performed
using blackboard-like built-in predicates where the first argument is the instance name.
There is no support for inheritance or subclassing.

LPA Prolog++

Prolog++ [47, 48] is a commercial product of LPA [49]. It is a class-based system, sup-
porting single and multiple inheritance. Prolog++ makes a distinction between methods
and attributes. Methods are static, while attributes are dynamic. Accessing and assign-
ment primitives are defined to handle attributes. Both methods and attributes can be
either public or private. Prolog++ includes several graphical development tools such as
an object browser, an editor for object methods, and an object-graph to handle class
hierarchies. Two interesting features of Prolog++ are its support for part-of hierarchies
and data-driven programming.

ISCO

ISCO [50] is a logic programming language developed for interfacing with organizational
information systems such as databases. It allows information to be described using
single-inheritance hierarchies of classes. ISCO is currently implemented as a Prolog
program and a set of front-ends for Web interfacing and for accessing databases. ISCO
is one of several examples of logic programming languages adopting object-oriented
concepts to better deal with the complexity of programs that work on heterogeneous
environments.

1.2. Related work 15

XPCE

XPCE [51] is a class-based object-oriented system for building graphical user interfaces.
It includes a rich library of built-in classes implementing graphics widgets and data
structures, organized in a single-inheritance hierarchy. It is written in C, but allows
object methods to be defined in multiple languages, including Prolog. XPCE works as a
library for a host language such as Prolog, Lisp, or C++. Thus, XPCE is not a Prolog
object-oriented extension in the same sense as the ones described above, but can be
used as such. In its current version, it is only compatible with the SWI-Prolog compiler,
although older versions worked with both Quintus Prolog and SICStus Prolog.

Other Prolog object-oriented extensions

Two other Prolog object-oriented extensions, L&O [23] and OL(P) [52], should be men-
tioned here. They are no longer in development. However, the source code of both
extensions is publicly available and has inspired some of the implementation solutions
adopted by Logtalk (and other Prolog object-oriented extensions). L&O is compatible
with both IC-Prolog and LPA MacProlog, while OL(P) is compatible with Quintus Pro-
log and SICStus Prolog. As mentioned above, a summary of the major features of both
extensions can be found in [34].

1.2.2 Why developing Logtalk?

From the strict point-of-view of a Prolog object-oriented extension, why developing
Logtalk? Assuming that the goals expressed in the previous chapter have been reached,
Logtalk provides a set of features that, taken altogether, are not available in any other
Prolog extension. However, Logtalk also represents a set of design choices, and conse-
quently a set of trade-offs, that differentiates it from most other Prolog object-oriented
extensions. Some of these differences are discussed below. In addition, it should be
noted that Logtalk is one of the few extensions under active development that is not a
commercial product.

Compatibility with Prolog compilers

The compatibility with the generality of Prolog compilers of most extensions is very lim-
ited. Two older extensions, OL(P) and L&O, could be ported to other Prolog compilers,
but they are no longer being maintained or developed. Most of the remaining exten-
sions are proprietary, closed products. This is the case of Quintus Objects, Jinni, OLP,
Prolog++, and Minerva. Two other extensions, SICStus Objects and O’CIAO, rely on
term expansion mechanisms for source-to-source compilation that are only available in
some Prolog compilers. In addition, their implementations depend heavily on the de-
tails of the native module systems. This constitutes another roadblock to porting these
extensions to other Prolog compilers. In contrast, Logtalk is an open source project,
designed from scratch to be compatible with most Prolog compilers and with the current
ISO Prolog standard. The Logtalk implementation does not depend on details specific
to any Prolog compiler.

16 Chapter 1. Objects

Areas of application

Some object-oriented extensions are tailored for specific areas of application. For ex-
ample, XPCE is mainly used for developing graphical user interfaces. Quintus Objects
is optimized for writing efficient object-oriented programs in Prolog where objects are
essentially dynamic data structures containing Prolog terms and C-like typed values.
ISCO is geared towards the development and maintenance of heterogeneous information
systems.

The scope of application of most extensions described above is also delimited by two
features: the support for class-based programming and the distinction between methods
and attributes. These extensions are focused on making possible in Prolog to construct
the type of programs typical of languages such as C++ and Java. In contrast, Logtalk
emphasis is on predicate encapsulation and reusing solutions to cope with software
engineering problems.

One of the most striking observations is that most object-oriented extensions do
not seem to be used in-house for development or for extending the supporting Prolog
compilers. For example, SICStus has a large set of libraries that use the module system,
but no SICStus Objects versions of them. In fact, SICStus Objects is just another
library. The same thing happens with O’CIAO. LPA recently added a TCP/IP library
to WinProlog, but the new predicates were added as new built-ins instead of using its
own Prolog++ object-oriented extension. The same can be said about other extensions.
If the Prolog developers and vendors behind these object-oriented extensions do not
appear to use them, why should their users?

Methods and attributes versus predicates

Most of the Prolog object-oriented extensions described above make a distinction be-
tween methods and attributes. In some of them, this distinction is made for program-
ming convenience, as the same functionality could be accomplished, although in a more
cumbersome way, using Prolog built-in predicates such as assertz/1 and retract/1.
Most extensions take advantage of the distinction between methods and attributes to
optimize the code that is generated when compiling objects. In Logtalk, objects contain
predicates, which can be either static or dynamic. No distinction is made between a
predicate that represents the equivalent of a method, and a predicate that represents an
attribute. Logtalk aims to provide Prolog with code encapsulation and reuse features
based on object-oriented concepts, not to bring to Prolog the programming style typical
of object-oriented languages such as C++.

Class-based versus prototype-based extensions

A Prolog object-oriented extension provides a competing encapsulation solution to the
use of module systems, either as found on some Prolog compilers or as specified in the
ISO Prolog standard. The extensions described above can be classified as either class-
based or prototype-based. With the exception of SICStus Objects, all other extensions
are class-based. From the point-of-view of Prolog programming, classes are not the best
choice as prototypes provide a much fitter replacement for Prolog modules. Nevertheless,
the preference for class-based designs is to be expected as this is the most widespread
type of system found on object-oriented languages. Logtalk supports both prototypes

1.2. Related work 17

and classes. As such, it provides an alternative to the use of modules and, at the same
time, enables the use of class hierarchies whenever necessary.

1.2.3 Prolog module systems

Like objects, modules provide us with a way of defining namespaces, instead of being
limited to the flat database model of Prolog. There are a number of Prolog compilers
implementing module systems and an ISO Prolog standard for modules. SICStus Prolog
was chosen as a representative of the module systems as found in most Prolog compilers.
Its module system is broadly compatible with the ones found on other compilers such
as YAP or Quintus Prolog, and similar to the module system of other widely used
compilers such as SWI-Prolog. A general description of the basic concepts of Prolog
module systems is outside the scope of this thesis. It is assumed that the reader is
familiar with these module systems and with the ISO Prolog standard for modules.
As such, the descriptions below focus on the code encapsulation and reuse features of
modules.

SICStus Prolog module system

The SICStus Prolog module system is broadly compatible with the module systems
found on other Prolog compilers. Modules predicates are encapsulated between an
opening and a closing directive. The opening directive lists the predicates that are
exported by the module. Exported predicates are the equivalent to public object predi-
cates. These predicates can be called without using module qualification after importing
the module into the module where we want to use them. Modules do not provide data
hiding; any module predicate can be called using explicit module qualification.

There is an interesting difference between how module predicates and object predi-
cates are called. While a module predicate can be called without module qualification
after importing a module, object predicates are called by sending an explicit message to
an object. A detailed discussion of the pros and cons of explicit qualification to call an
encapsulated feature can be found in [53].

ISO Prolog Standard module system

The ISO standard for Prolog modules [3] was published five years after the publication
of the ISO standard for the Prolog core language [2]. The module system specified in
this standard has some serious shortcomings that hampers its adoption by the Prolog
community. Two of these shortcomings are described next. Two other important issues
regarding declaration of metapredicates and separation of interface from implementation
are discussed in Chapter 3 and in Chapter 4, respectively.

Encapsulation and data hiding Similar to objects, modules provide namespaces,
enabling the encapsulation of predicates. However, unlike objects, modules do not sup-
port data hiding, a feature commonly associated to encapsulation mechanisms. In the
section 6.2.2 — Procedure Visibility, the ISO standard for Prolog modules states:

“All procedures defined in a module are accessible from any module by use of explicit
module qualification. It shall be an allowable extension to provide a mechanism that
hides certain procedures defined in a module M so that they cannot be activated,
inspected or modified except from within a body of the module M”.

18 Chapter 1. Objects

Thus, modules provide a form of encapsulation where data hiding is optional and im-
plementation dependent. Nevertheless, it should be noted that this limitation is in line
with current practice regarding existing module systems.

Compatibility issues A standard should be based on current practice. In alterna-
tive, a standard may specify new features that are compelling enough so that current
implementations are upgraded to conform to it. The ISO Prolog standard for modules
fails in both accounts. The module system it specifies is incompatible with existing
and widely used module systems. In addition, its new features do not overcome in any
significant way the limitations of current module systems. This may explain why most
Prolog vendors opted, until now, for ignoring it. This contrasts with the ISO Prolog
standard for the core language that is being adopted by most Prolog compilers.

Performance of module systems versus object-oriented extensions

Encapsulating Prolog code in a Logtalk object implies necessarily an overhead compared
to the usual Prolog flat database model. Sending a message to an object implies checking
whether the object exists, verify whether the message is part of the object interface, and
finding a predicate definition (a method) to compute the answer. Depending on whether
these checks are performed at compile time or at runtime, the overhead can be similar
to calling a predicate encapsulated in a Prolog module. In other cases, the overhead will
be bigger due to the use of features such as inheritance and dynamic binding.

1.3 Working with objects

This section describes the syntax for defining objects and object hierarchies, the Logtalk
built-in predicates for object handling, and the available object directives. See Appendix
B for the full specification of the directives and built-in predicates.

1.3.1 Defining a new object

We can define a new object in the same way we write Prolog code: by using a text editor.
Object code (directives and predicates) is textually encapsulated between two Logtalk
directives: object/1-5 and end object/0. The simplest object will be a self-contained
prototype, not depending on any other Logtalk entity:

:- object(Object).
...

:- end_object.

The first argument of the opening directive is the object identifier. Object identifiers
can be atoms or compound terms1. Objects share a single namespace with protocols
(presented in Chapter 4) and categories (presented in Chapter 5): we cannot have an
object with the same identifier as an existing object, protocol, or category.

1Compound terms are used as identifiers for parametric objects; these will be described later in this
chapter.

1.3. Working with objects 19

1.3.2 Defining object hierarchies

In object-oriented programming, objects are typically organized in hierarchies. Object
hierarchies enable sharing of interface and implementation through inheritance. Logtalk
supports both prototype hierarchies and class hierarchies.

Prototype hierarchies

Prototype hierarchies are constructed by defining extension relations between objects.
To define an object as an extension of one or more objects we will write:

:- object(Prototype,
extends(Parents)).
...

:- end_object.

The sequence of the parent prototypes in the object-opening directive determines the
lookup order for predicate inheritance. The lookup is performed using a depth-first
strategy.

Class hierarchies

Class hierarchies are constructed by defining instantiation and specialization relations
between objects. To define an object as an instance of one or more classes, we will write:

:- object(Object,
instantiates(Classes)).
...

:- end_object.

To define a class as a specialization of one or more classes (its superclass), we will write:

:- object(Class,
specializes(Superclasses)).
...

:- end_object.

If we are defining a reflexive system where every class is also an object, we will be using
the following pattern:

:- object(Class,
instantiates(Metaclasses),
specializes(Superclasses)).
...

:- end_object.

Compiling objects

A stand-alone object is always compiled as a prototype, that is, a self-describing object.
If we want to use classes and instances, then we will need to specify at least an instan-
tiation or a specialization relation. The best way to accomplish this is to define a set of
objects that provides the basis of a reflective system, as will be exemplified later in this

20 Chapter 1. Objects

chapter. If a reflective system solution is not necessary, but we still want to construct
class hierarchies, then we can simply turn a class into an instance of itself or, in other
words, turn a class into its own metaclass. For example:

:- object(root,
instantiates(root)).
...

:- end_object.

An alternative solution would be to add a predefined root class to Logtalk, and then to
use that class as the default root class when defining class-based hierarchies. However,
it is a Logtalk design choice not to specify any predefined entities in order to keep the
language simple and unbiased to particular solutions. We can always use an entity
library if necessary.

1.3.3 Inheritance

In the context of logic programming, inheritance can be interpreted as a form of the-
ory extension: an object virtually contains, in addition to its own predicates, all the
predicates inherited from other objects. In order to determine the set of predicates that
characterizes an object, inheritance rules are applied to the object relations with other
entities. These rules specify how predicates are inherited, what search algorithm to use
when there is more than one inheritance path, and how inheritance conflicts are solved.

In languages, such as Logtalk, which support the separation between interface and
implementation, a distinction is made between interface inheritance and implementa-
tion inheritance. In Logtalk, interface inheritance refers to the inheritance of predicate
declarations, while implementation inheritance refers to the inheritance of predicate
definitions. Therefore, two sets of inheritance rules are necessary: one set for interface
inheritance and another for implementation inheritance.

The inheritance rules are applied whenever a message is sent to an object2. Inter-
face inheritance rules are applied to find a predicate declaration matching the message
in order to check its validity. Implementation inheritance rules are applied to find a
predicate definition to answer the message.

Inheritance rules differ for prototype-based hierarchies and class-based hierarchies,
as will be explained below. Nevertheless, some rules are common to both hierarchy
types:

1. Local predicate definitions always override conflicting inherited definitions.

2. Whenever there is more than one inheritance path (for example, when using mul-
tiple inheritance), a depth-first search algorithm is applied. The first declaration
(definition) found overrides any possible declarations (definitions) on any remain-
ing inheritance paths.

The use of a depth-first searching algorithm (on the implementation of multiple inheri-
tance mechanisms) is common to other Prolog object-oriented extensions such as L&O
or Prolog++. This contrasts with the sophisticated algorithms found in some program-
ming languages such as CLOS [54]. Nevertheless, no solution has been found that might

2This should be interpreted in a loose sense. Inheritance rules can be applied at compile time (static
binding) or at runtime (dynamic binding). These options will be discussed in Chapter 8.

1.3. Working with objects 21

be considered satisfactory for all the problems raised by the multiple inheritance mech-
anisms. A detailed discussion of these problems can be found in [55]. Logtalk multiple
inheritance support will be discussed later in this section.

Along with extension, instantiation, and specialization relations with other objects,
an object may also implement one or more protocols, and import one or more categories.
Protocols are Logtalk entities containing predicate declarations that can be implemented
by any object (protocols will be fully discussed in Chapter 4). Categories are Logtalk
entities containing predicate declarations and predicate definitions that can be imported
by any object (categories will be fully discussed in Chapter 5). Inheritance rules work
as if all the object protocol and category relations have been flattened by moving the
contents of the implemented protocols and importing categories into the object. This
flattening process complies with the following rules:

3. Local predicate declarations override conflicting predicate declarations inherited
from protocols and categories. Predicate declarations inherited from protocols
override conflicting predicate declarations inherited from categories.

4. Local predicate definitions override conflicting predicate definitions inherited from
categories.

Note that this flattening process results in implemented protocols and imported cate-
gories being always searched before extended, instantiated, or specialized objects.

Logtalk support for multiple-inheritance, multiple protocol implementation, and
multiple category importation implies an ordering of alternative inheritance paths per
relation type, expressed by the following rule:

5. The ordering of alternative inheritance paths per relation type is the same as
the order of the related entities in the corresponding clause in the object-opening
directive (for example, if a prototype extends two parents, the first declared parent
will be searched before the second one).

These five inheritance rules are complemented by rules that are specific to each type of
object hierarchy, as will be explained next.

Inheritance rules for prototype-based hierarchies

The inheritance rules for prototype-based hierarchies are simple and similar for both in-
terface inheritance and implementation inheritance. When a prototype does not contain
a local predicate declaration matching a message, the search is done in the prototype
parents. Likewise, when a prototype does not contain a local predicate definition for
answering a message, the search is done in the prototype parents.

Inheritance rules for class-based hierarchies

The inheritance rules for class-based hierarchies must take into account the distinction
between instantiation and specialization relations, which implies different rules for inter-
face inheritance and implementation inheritance. When an instance receives a message,
the search for a matching predicate declaration starts in the instance classes, and then
proceeds to the class superclasses3. The search for a predicate definition in order to

3Note that a local predicate declaration does not override inherited predicate declarations because
the search always starts at the instance classes, making the local declaration meaningful only for the
descendant instances of the instance itself.

22 Chapter 1. Objects

answer the message starts at the instance itself and, if not found, proceeds to the in-
stance classes and respective superclasses. Note that this inheritance rule differs from
the rules of common object-oriented languages where methods are always defined at the
class level.

Multiple inheritance

Inheritance mechanisms can hardly be discussed without referring to the long, and
probably endless, debate on single inheritance versus multiple inheritance. Single inher-
itance mechanisms can be implemented efficiently, but they impose several limitations
on code reuse, even if the multiple characteristics we intend to inherit are orthogonal.
In contrast, multiple inheritance mechanisms are attractive in their apparent capability
of modeling complex situations. However, the use of multiple inheritance raises some
complex problems in the domain of software engineering, particularly in code reuse and
application maintenance. Multiple inheritance is often more useful as an analysis and
project abstraction, than as an implementation technique [56]. All these problems are
substantially reduced if we preferably use composition mechanisms instead of specializa-
tion mechanisms in software development [22]. As will be fully discussed in Chapter 5,
Logtalk supports both the classical instance-based composition and a new composition
mechanism based on the concept of categories. Categories support implementation reuse
in the same way as protocols support interface reuse, providing an alternative solution to
problems that would require a multiple inheritance solution on other programming lan-
guages. Nevertheless, Logtalk supports multi-inheritance for those rare occasions where
its composition mechanisms fail to provide a suitable solution. This support, however,
does not provide any mechanism for selecting a specific inheritance path or for dealing
with inheritance conflicts.

1.3.4 Creating a new object at runtime

An object can be dynamically created at runtime by using the Logtalk built-in predicate
create object/4:

| ?- create_object(Object, Relations, Directives, Clauses).

The first argument, the identifier of the new object (a Prolog atom or compound term),
must not match any existing entity identifier. The second argument corresponds to the
relations described in the opening object directive. The third and fourth arguments are
lists of directives and predicate clauses, respectively. For example, the following call:

| ?- create_object(o1, [extends(o2)], [public(p/1)], [p(1), p(2)]).

is equivalent to compiling and loading the object:

:- object(o1,
extends(o2)).

:- dynamic.

:- public(p/1).

p(1).

1.3. Working with objects 23

p(2).

:- end_object.

If we need to create many (dynamic) objects at runtime, then it is better to define a
metaclass or a prototype with a predicate that calls this built-in predicate in order to
create new objects. This predicate may provide automatic generation of object identifiers
and accept object initialization options. The current Logtalk implementation contains
example classes defining such predicates in its library.

1.3.5 Abolishing dynamic objects

Dynamic objects can be abolished by calling the built-in predicate abolish object/1:

| ?- abolish_object(Object).

The argument must be an identifier of an existent dynamic object; otherwise an error
will be thrown.

1.3.6 Object directives

Object directives are used to set initialization goals, define object properties, and for
documenting objects.

Object initialization

We can define a goal to be executed as soon as an object is (compiled and) loaded in
memory with the initialization/1 directive:

:- initialization(Goal).

The initialization goal can be any valid Prolog or Logtalk call. For example, the goal
can be a call to a locally defined predicate:

:- object(foo).

:- initialization(init).

:- private(init/0).

init :-
... .

...

:- end_object.

or a message to other object:

:- object(assembler).

:- initialization(control::start).
...

:- end_object.

24 Chapter 1. Objects

The ::/2 operator is used in Logtalk for message sending. The initialization goal can
also be a message to self in order to call an inherited predicate. Assuming, for example,
that we have an object named profiler defining a reset/0 predicate, we could write:

:- object(stopwatch,
extends(profiler)).

:- initialization(::reset).
...

:- end_object.

The ::/1 operator is used in Logtalk for sending a message to self. Note that, in this
context, self denotes the object containing the directive.

Descendant objects do not inherit initialization directives from ancestor objects.
In addition, note that by initialization we do not necessarily mean setting an object’s
dynamic state.

Dynamic objects

An object can be either static or dynamic. An object created during the execution of a
program is always dynamic. An object defined in a file can be either dynamic or static.
Dynamic objects are declared by using the dynamic/0 directive in the object source
code:

:- dynamic.

As in most Prolog systems, dynamic code provides lower performance than static code.
Therefore, we should only use dynamic objects whenever they need to be abolished
during program execution.

Object dependencies

In addition to the relations declared in the object-opening directive, the predicate defini-
tions contained in the object may imply other dependencies. These can be documented
by using the directives calls/1 and uses/1.

The calls/1 directive can be used when a predicate definition sends some message
that is declared in a specific protocol:

:- calls(Protocol).

Protocols will be discussed in Chapter 4.
When a predicate definition sends a message to a specific object, this dependence

can be declared with the directive uses/1:

:- uses(Object).

These two directives may be used by the Logtalk runtime engine to ensure that all
necessary entities are loaded when running an application. The directive uses/1 is also
the basis for a planned extension of the Logtalk language to support object namespaces.
Both directives will be further discussed in Chapter 7.

1.4. The pseudo-object user 25

Object documentation

An object can be documented with arbitrary user-defined information by using the
directive info/1:

:- info(List).

Assuming, for example, that we have defined an object containing list predicates, it
could be documented as follows:

:- info([
version is 1.0,
author is ’Paulo Moura’,
date is 2000/7/24,
comment is ’List predicates.’]).

This directive will be fully discussed in Chapter 7.

1.4 The pseudo-object user

The only predefined object in Logtalk is the pseudo-object user, which contains all user
predicate definitions not encapsulated in a Logtalk entity. These predicates are assumed
to be implicitly declared public. This pseudo-object is sometimes used in order to call
built-in Prolog predicates that are redefined inside Logtalk objects.

1.5 Finding about objects

Logtalk provides a set of built-in predicates that enables reflective computations about
objects and object relations in our applications.

1.5.1 Finding defined objects

We can enumerate, using backtracking, all defined objects by calling the Logtalk built-in
predicate current object/1 with a non-instantiated variable:

| ?- current_object(Object).

This predicate can also be used to test whether an object is defined by calling it with a
valid object identifier (either an atom or a compound term).

1.5.2 Object relations

Logtalk provides a set of built-in predicates for querying the system about the possible
relations an object may have with other objects.

Extension relations

The built-in predicate extends object/2 can be used to query all prototype extension
relations:

| ?- extends_object(Prototype, Parent).

26 Chapter 1. Objects

Instantiation relations

The built-in predicate instantiates class/2 can be used to query all instantiation
relations:

| ?- instantiates_class(Instance, Class).

Note that Instance can be a class with the respective Class being (one of) its meta-
class(es).

Specialization relations

The built-in predicate specializes class/2 can be used to query all class specialization
relations:

| ?- specializes_class(Class, Superclass).

1.5.3 Object properties

We can find the properties of defined objects by calling the Logtalk built-in predicate
object property/2:

| ?- object_property(Object, Property).

An object may have either the static, dynamic, or built in property. Dynamic objects
can be abolished at runtime by calling the abolish object/1 built-in predicate.

1.6 Examples

This section presents three simple examples of Logtalk programs. These examples in-
clude both prototype-based solutions and class-based solutions. The full source code of
these examples is available with the current distribution of Logtalk.

1.6.1 Towers of Hanoi

This example shows how to use an object to encapsulate a solution for the well-known
“Towers of Hanoi” problem. The object will be a self-contained prototype with its
interface resuming to a single predicate whose argument will be the number of disks for
which we want to solve the problem:

:- object(hanoi).

:- public(run/1).

run(Disks) :-
move(Disks, left, middle, right).

move(1, Left, _, Right):-
!,
report(Left, Right).

1.6. Examples 27

move(Disks, Left, Aux, Right):-
Disks2 is Disks - 1,
move(Disks2, Left, Right, Aux),
report(Left, Right),
move(Disks2, Aux, Left, Right).

report(Pole1, Pole2):-
write(’Move a disk from ’),
writeq(Pole1), write(’ to ’), writeq(Pole2),
write(’.’), nl.

:- end_object.

Note that, if we remove the Logtalk directives (the opening and closing object directives,
and the predicate directive), the remaining code consists of Prolog-compliant predicate
clauses. This is an important feature of Logtalk: Prolog code can be easily encapsulated
by Logtalk objects with little or no modifications.

The predicate directive public/1 is used to declare predicates that can be called
from outside the object through message sending. This predicate directive will be further
discussed in Chapter 3.

After compiling and loading this object, we can test our code by sending the message
run/1 to the object. Message sending is performed using the infix operator ::/2. An
example call will be:

| ?- hanoi::run(3).

Move a disk from left to right.
Move a disk from left to middle.
Move a disk from right to middle.
Move a disk from left to right.
Move a disk from middle to left.
Move a disk from middle to right.
Move a disk from left to right.

yes

This example presents an object solution that is essentially equivalent to a module
solution. In addition, it illustrates how, in Logtalk, we can easily define stand-alone
objects that are not attached to any hierarchy, as in any prototype-based language.

1.6.2 A reflective class-based system

The easier and, at the same time, the most powerful way of working with instances and
classes in Logtalk is to define a set of classes that will provide the basis for a reflective
class-based system. This example extends the reflective class-based system presented
in [57], by providing explicit support for abstract classes [27]. It is composed by three
classes: object, abstract class, and class. The class object works as the root of
the inheritance graph, containing predicates common to all objects:

28 Chapter 1. Objects

:- object(object,
instantiates(class)).
...

:- end_object.

The class abstract class works as the default metaclass for all abstract classes, con-
taining predicates common to all classes:

:- object(abstract_class,
instantiates(class),
specializes(object)).
...

:- end_object.

The class class works as the root of the instantiation graph and the default metaclass
for all instantiable classes, containing predicates for creating, initializing, and abolishing
class instances:

:- object(class,
instantiates(class),
specializes(abstract_class)).
...

:- end_object.

Notice that all three classes are instances of the class class, including class itself,
thus closing the potential infinite regression of metaclasses characteristic of reflective
systems. The most remarkable feature of this set of classes is that each one inherits the
predicates of itself and of the other two classes with no lookup loops. For instance, if we
send a message to object, the search for a matching predicate declaration starts at its
metaclass, class, continues at the metaclass superclass, abstract class, and finally
at object itself.

1.6.3 Geometric shapes

This is a classical object-oriented programming example. The idea is to represent ge-
ometrical shapes and their properties. In order to help compare the pros and cons of
prototypes and classes, the geometric shapes will be implemented both as a prototype
hierarchy and as a class hierarchy.

Prototype-based version

This first version represents geometric shapes through a hierarchy of prototypes. The
root prototype, shape, declares common geometric shape properties, defining default
values for them:

:- object(shape).

:- public(color/1).
:- public(position/2).

color(blue). % default shape color

1.6. Examples 29

position(0, 0). % default shape position

:- end_object.

We can define a prototype named polygon, containing properties common to all geo-
metric polygons, as an extension of the prototype shape:

:- object(polygon,
extends(shape)).

:- public(nsides/1).
:- public(side/1).

:- public(area/1).
:- public(perimeter/1).

side(1). % default side length

:- end_object.

Being a prototype, we can send to it any message corresponding to a predicate that it
declares or inherits from its parent prototypes. For example:

| ?- polygon::area(A).

no

The query fails because the predicate area/1 is not defined. Nevertheless, the query
itself is valid because the predicate area/1 is declared for the prototype polygon (and
for all prototypes inheriting from it)4.

Regular polygons can be defined as an extension of generic polygons. Given a regular
polygon, we can define a default method for calculating its perimeter:

:- object(regular_polygon,
extends(polygon)).

perimeter(Perimeter) :-
::nsides(Number),
::side(Side),
Perimeter is Number*Side.

:- end_object.

The operator ::/1 allows us to send a message to self, i.e. the object that receives
the message perimeter/1. Therefore, in order to calculate the perimeter of a regular
polygon, we send to self messages for retrieving its number of sides and its side length.
So far, all prototypes represent abstract shape concepts. Actual shapes such as squares

4The semantics of message sending will be further discussed in Chapter 2.

30 Chapter 1. Objects

and triangles can be represented as extensions of regular polygon. For example:

:- object(square,
extends(regular_polygon)).

nsides(4).

area(Area) :-
::side(Side),
Area is Side*Side.

:- end_object.

We can ask the prototype square for any of the shape properties declared by itself and
by its ancestors. For example:

| ?- square::nsides(N).

N = 4
yes

Some queries, such as area/1 or perimeter/1, return results that are calculated using
default property values (in this case, side length):

| ?- square::area(A).

A = 1
yes

Specific squares can be represented as extensions of the prototype square. For example,
a prototype such as:

:- object(q1,
extends(square)).

:- end_object.

will represent a square with the default values for polygon side length, shape color, and
shape spatial position:

| ?- q1::(color(Color), side(Side), position(X, Y)).

Color = blue
Side = 1
X = 0
Y = 0
yes

The syntax employed on this query, Object::(Msg1, Msg2, ..., Msgn), is a short-
hand notation for sending a set of messages to the same object.

When defining a new prototype through extension of existing prototypes, any inher-
ited predicate definition can be overridden with a local definition. For example, if we
define a specific square with the following property values:

1.6. Examples 31

:- object(q2,
extends(square)).

position(2, 3). % override default inherited values
color(red).
side(3).

:- end_object.

it will be the q2 specific value for side length that will be used when calculating its area
and its perimeter:

| ?- q2::(side(Side), area(Area), perimeter(Perimeter)).

Side = 3
Area = 9
Perimeter = 12
yes

This simple example could be easily extended to represent other regular polygons and
other types of geometric shapes, along with their properties. When using prototypes,
there is no distinction between abstract shape concepts, such as “polygon”, and ac-
tual shapes, such as “square”. Nor is there a distinction between abstractions, such
as “square”, and concrete objects, such as“q1” or “q2”. When these distinctions are
important in our application, we should then opt for a class hierarchy instead. However,
as shown in this example, prototypes allow us to query indistinctively abstractions and
concrete objects. This is not possible with classes, as it will be explained next.

Class-based version

In this second version, geometric shapes are represented through a hierarchy of classes
and instances. This version assumes that the classes presented in the reflective class-
based system example have already been defined. In addition, since the contents of all
the classes and instances are the same as the contents of the corresponding prototypes
on the first version, the contents of the objects will be omitted unless they are neces-
sary to clarify some concept. In fact, the differences between the prototypes and the
corresponding classes and instances lie exclusively on the object-opening directives.

The root class, shape, is an abstract class and, as such, an instance of the class
abstract class. In addition, we may define shape as a specialization of the class
object, which represents properties common to all objects, including geometric shapes.
The resulting object definition will be:

:- object(shape,
instantiates(abstract_class),
specializes(object)).
...

:- end_object.

32 Chapter 1. Objects

The class shape is specialized by the class polygon, also an abstract class:

:- object(polygon,
instantiates(abstract_class),
specializes(shape)).
...

:- end_object.

The class regular polygon, a specialization of class polygon, is also an abstract class:

:- object(regular_polygon,
instantiates(abstract_class),
specializes(polygon)).
...

:- end_object.

The class square is an instantiable class, so its metaclass is the class class:

:- object(square,
instantiates(class),
specializes(regular_polygon)).
...
nsides(4).
...

:- end_object.

Note that the predicate nsides/1 works as a shared instance variable: it is a property
whose value is shared by all square instances. Its definition is stored at class level
in order to avoid repeating the same information in every instance. Shared instance
variables are known in Java as static variables and in Smalltalk as class variables (a
misleading name for a language that supports metaclasses).

In contrast with prototypes, we cannot send messages to classes, such as square,
to retrieve shared shape properties. For example, the following query will throw an
exception:

| ?- square::nsides(N).

! error(
existence_error(predicate_declaration, nsides(_)),
square::nsides(N),
user)

This happens because the predicate nsides/1 is declared for all descendant instances of
the class polygon, not for the classes themselves. Defining a square instance such as:

:- object(q1,
instantiates(square)).

:- end_object.

allows us to use any public predicate declared in the instance class, or in the instance
class superclasses, as a message. For example:

1.7. Parametric objects 33

| ?- q1::nsides(N).

N = 4
yes

Default property values stored in classes work in the same way as in the prototype
version:

| ?- q1::(color(Color), side(Side), position(X, Y)).

Color = blue
Side = 1
X = 0
Y = 0
yes

We can also override default property values with local instance values, as we did with
prototypes:

:- object(q2,
instantiates(square)).
...
side(3).
...

:- end_object.

The same queries will return the same answers, as expected:

| ?- q2::(side(Side), area(Area), perimeter(Perimeter)).

Side = 3
Area = 9
Perimeter = 12
yes

The distinction between abstract classes and instantiable classes, and between classes
and instances, provides a rigid structure that reflects the distinction between abstract
shapes and actual shapes, and between actual shapes and concrete objects. However,
this rigid structure prevents us from querying classes using the same predicates that
they declare and define for their instances. For example, we cannot ask square (or any
other class representing an actual shape) about its number of sides. This query can only
be sent to the class instances. But even so, we have no way of telling an answer that is
specific to an instance from an answer that applies to all class instances.

1.7 Parametric objects

A parametric object is an object whose identifier is a compound term containing free
variables. These variables play the role of object parameters. Object predicates can then
be coded to depend on the parameter values. Thus, a parametric object can be regarded
as a generic object from which specific instantiations can be derived by instantiating the

34 Chapter 1. Objects

object parameters. Parameter instantiation usually takes place when sending a message
to the object. Object parameters can be any valid Prolog term, including free variables,
atomic terms, and compound terms.

Object parameters can be used to represent object state that is set when the object
is created, but is not modified during the object lifetime, thus avoiding the use of
destructive update methods for object initialization. Even when object state is updated
at runtime, it may be possible to use the instantiations of the parametric object identifier
to represent the history of object state changes. Moreover, parameter instantiation is
undone on backtracking. Note that, when representing state by dynamic predicates,
update operations using assert and retract predicates are not reversed on backtracking.

Parametric objects can also be used to attach a set of predicates to terms that share
a common functor and arity. Thus, instead of using a term as a predicate argument, the
predicate is called by sending the corresponding message to the term itself. This leads
to a more data-driven programming style where data is represented by instantiations of
parametric object identifiers.

1.7.1 Related work

Logtalk parametric objects are based on both L&O parametric theories and SICStus
Objects parametric objects. Besides syntax differences, all three implementations are
similar, with an important exception. As will be described later in this section, Logtalk
parameter values are accessed via a built-in method. In L&O and SICStus Objects,
parameters act as object global variables. There are two reasons for the Logtalk design
choice. First, global variables are a foreign concept to the Prolog language. All variables
in a predicate clause are local. Second, for complex objects, there is a risk of name
conflict between parameter names and predicate local variables.

L&O parametric theories

In L&O, parametric objects are known as parametric theories. A theory is identified by
a label, a term that is either a constant or a compound term with variables. One of the
examples presented in [23] concerns description of trains:

train(S, Cl, Co):{
colour(Cl).
speed(S).
country(Co).
journey_time(Distance, T) :-

T = Distance/S.
}

The label variables are universally quantified over the theory. A specific train can be
described by instantiating the label variables:

train(120, green, britain)

Messages can be sent to labels, which act as object identifiers. For example, the following
message:

train(120, green, britain):journey_time(1000, Time)

will calculate a journey time using the value of the label first parameter as the speed of
the train.

1.7. Parametric objects 35

SICStus parametric objects

SICStus parametric objects are similar to L&O parametric theories, with parameters
acting as global variables for the parametric object. The SICStus Objects manual [37]
contains the following example, describing ellipses and circles:

ellipse(RX, RY, Color) :: {
color(Color) &
area(A) :-

:(A is RX*RY*3.14159265)
}.

circle(R, Color) :: {
super(ellipse(R, R, Color))
}.

red_circle(R) :: {
super(circle(R, red))
}.

SICStus Objects uses the predicate super/1 to declare the ancestors of an object. This
example illustrates parameter-passing between related objects in a hierarchy, a feature
common to both L&O and Logtalk, which will be explained later in this section.

OL(P) object instances

OL(P) (Object Layer for Prolog) is a Prolog object-oriented extension that represents
object instances using a notation similar to parametric objects. An instance I of an
object named Object is represented as Object(I). The term I is a list of attributes and
attribute-value pairs. Instance state changes can be accomplished by constructing a
new list with the updated and unchanged attributes. The OL(P) system documentation
offers the following example:

| ?- rect(I)::area(A), rect(I)::move(5, 5, J).

The method move/3 will return, in its third argument, the attribute list J resulting
from the update of the attribute list I. In addition, OL(P) provides a nice notation for
accessing and updating attributes. This solution for object state changes implies the use
of extra arguments for methods that update attributes. Nevertheless, it is an important
technique, which preserves the declarative semantics found on pure Prolog programs.
We can easily apply this solution to Logtalk programs by using parametric objects.
Moreover, we are not restricted to use a list of attributes. If the number of attributes
is small, an identifier with the format Object(V1, V2, ..., Vn) will provide a more
efficient solution.

C++ class templates

Although the notion of parametric objects may resemble the concept of C++ class
templates, there is a fundamental difference: C++ class templates are not objects, we
must instantiate them (by giving values to their parameters) to obtain a class and
then instantiate the class to get a regular object. In addition, C++ templates must

36 Chapter 1. Objects

be instantiated at compilation time while Logtalk object parameters are instantiated at
runtime.

1.7.2 Accessing object parameters

In order to give access to object parameters, Logtalk provides the built-in local method
parameter/2. It can be used as shown in the following template:

:- object(Functor(Arg1, Arg2, ..., Argn),
...).

Predicate :-
...,
parameter(Number, Value),
... .

Arguments are numbered starting at one. For example:

:- object(ellipse(_RX, _RY, _Color)).

...
color(Color) :-

parameter(3, Color).
...

The built-in method parameter/2 can be used to set, get, or test a parameter value.
Assume, for example, that the following object has been compiled and loaded:

:- object(test(_Parameter)).

:- public(gateway/1).
:- public(transform/1).

gateway(Parameter) :-
parameter(1, Parameter).

transform(Value) :-
parameter(1, Parameter),
double(Value, Parameter).

double(Value, Double) :-
...

:- end_object.

For retrieving or setting the object parameter value we can write queries such as:

| ?- test(In)::gateway(abc), test(123)::gateway(Out).

In = abc,
Out = 123
yes

1.7. Parametric objects 37

The predicate gateway/1 is needed because the parameter/2 is a local method and,
as such, it cannot be used in message sending5. One may ask why use the predicate
gateway/1 in the first place when we could simply write something like:

| ?- test(Out).

The answer is that we may want to abstract the exact details of complex parameters
whose structure might be changed later.

Object parameters can also be computed from the arguments of a message as in the
following query:

| ?- test(Parameter):: transform(2).

Parameter = 4,
yes

Although in most cases the method parameter/2 is used to retrieve parameter values,
and not to set them, this example shows that instantiations of a parametric object can
be generated by sending a message to the object. This built-in method will be further
discussed in Chapter 3, along with alternative ways of accessing object parameters.

1.7.3 Parameter passing

The relationship between the parameters of an object and the parameters of its ancestor
objects is established, in the object-opening directive, through unification. This ensures
parameter passing between related objects at runtime. Parameter passing works with
extension, instantiation, and specialization object relations.

As an example, consider the SICStus Objects example presented above, but using
Logtalk syntax. A query such as:

| ?- red_circle(3)::area(Area).

Area = 28.274334
yes

will result in the following instantiation chain of the parametric object identifiers:

red_circle(3) -> circle(3, red) -> ellipse(3, 3, red)

Note that the predicate area/1 is declared and defined in the object representing ellipses.

1.7.4 Examples

All the examples found on the L&O book and on the SICStus Objects manual can be
easily translated to Logtalk syntax. Two more examples are presented below.

5Calls to the method parameter/2 are compiled to a single unification call to ensure the best possible
performance. This optimization would not be possible when calling the method via message sending.

38 Chapter 1. Objects

Rectangles and squares

This first example is similar to the SICStus Objects example presented above. Instead of
ellipses and circles, rectangles and squares will be used to illustrate parametric objects
in Logtalk. Assume that we have a root prototype named shape defined as follows:

:- object(shape).

:- public(nsides/1).
...

:- end_object.

Assume now that the relevant rectangle properties are its width and its height. Rep-
resenting these two properties as object parameters, we can define an object named
rectangle(Width, Height) as follows:

:- object(rectangle(_Width, _Height),
extends(shape)).

:- public(width/1).
:- public(height/1).
:- public(area/1).
...

width(Width) :-
parameter(1, Width).

height(Height) :-
parameter(2, Height).

area(Area) :-
::width(Width),
::height(Height),
Area is Width*Height.

nsides(4).
...

:- end_object.

As illustrated by the object-opening directive, we can freely mix parametric and non-
parametric objects in a hierarchy. Note that the object parameters, Width and Height,
are anonymous variables. In order to use this object, we give values to its parameters.
For example:

| ?- rectangle(4, 3)::area(Area).

Area = 12
yes

1.7. Parametric objects 39

When a parametric object contains generic predicates that do not depend on parameter
values, the corresponding messages can be sent to the object without first instantiating
its parameters. For example:

| ?- rectangle(_, _)::nsides(N).

N = 4
yes

A square can be defined as a parametric object whose parameter will represent the length
of its side, square(Side). Moreover, a square is also a rectangle with equal values for
width and height:

:- object(square(Side),
extends(rectangle(Side, Side))).

:- public(side/1).

side(Side) :-
parameter(1, Side).

:- end_object.

With this object we can use all public predicates inherited from its parent prototype,
rectangle(Side, Side). For example:

| ?- square(2)::area(Area).

Area = 4
yes

Note that the predicates inherited from the object rectangle could be redefined in the
object square for a better performance. In this case, only the predicate declarations
would be inherited.

Symbolic differentiation of arithmetic expressions

This second example is based on a well-known example of symbolic differentiation and
simplification of arithmetic expressions, which can be found on [58]. The L&O system
also uses this example to illustrate parametric theories. The idea is to represent arith-
metic expressions as parametric objects. We can regard an arithmetic expression as
an object, whose name is the expression operator with greater precedence, and whose
parameters are the operator sub-expressions (that are, themselves, objects). In order to
simplify this example, the object methods will be restricted to symbolic differentiation
of polynomials with a single variable and integer coefficients. In addition, we will omit
any error-checking code. The symbolic simplification of arithmetic expressions could
easily be programmed in a similar way.

40 Chapter 1. Objects

For an arithmetic expression reduced to a single variable, x, we will have the following
object:

:- object(x).

:- public(diff/1). % returns the symbolic
% differentiation of self

diff(1).

:- end_object.

Arithmetic addition, x + y, can be represented by the parametric object ’+’(X, Y) or,
using operator notation, X + Y. Taking into account that the operands can either be
numbers or other arithmetic expressions, a possible definition will be:

:- object(_ + _).

:- public(diff/1).

diff(Diff) :-
parameter(1, X), parameter(2, Y),
diff(X, Y, Diff).

diff(I, J, 0) :-
integer(I), integer(J), !.

diff(X, J, DX) :-
integer(J), !, X::diff(DX).

diff(I, Y, DY) :-
integer(I), !, Y::diff(DY).

diff(X, Y, DX + DY) :-
X::diff(DX), Y::diff(DY).

:- end_object.

The object definitions for other simple arithmetic expressions, such as X - Y or X * Y,
are similar. The expression xn can be represented by the object X ** N as follows:

:- object(_ ** _).

:- public(diff/1).

diff(N * X ** N2) :-
parameter(1, X), parameter(2, N),
N2 is N - 1.

:- end_object.

1.8. Logtalk as a prototype language 41

After compiling and loading the above objects, and considering the operator precedences
as specified in the ISO Prolog standard, any Prolog polynomial expression can be inter-
preted as an object. For example, the polynomial 2*x**3 + x**2 - 4*x (2x3+x2−4x)
will be interpreted as (2*x**3) + (x**2 - 4*x) ((2x3) + (x2 − 4x)). Thus, this ex-
pression is an instance of the X + Y parametric object. We can thus write queries such
as:

| ?- (2*x**3 + x**2 - 4*x)::diff(D).

D = 2* (3*x**2)+2*x**1-4*1
yes

The resulting expression could then be symbolically simplified using a method defined
in the same way as the differentiation method.

One problem with this example is that all objects contain a declaration for the
predicate diff/1. This declaration could be moved to a protocol, a Logtalk entity that
can contain predicate declarations that can be implemented by any object. This would
avoid duplicating the declaration in each object that defines the predicate. Protocols
will be introduced and discussed later, in Chapter 4.

1.8 Logtalk as a prototype language

This section summarizes Logtalk features as a prototype-based object-oriented language.
It may be used for comparing Logtalk to other prototype programming languages. The
classification method described in [59] is adopted here.

1.8.1 Object representation

In Logtalk, the main distinction between prototypes and classes is that prototypes are
self-describing objects. The common view of prototypes as representing concrete (or
prototypical) objects, as opposite to the view of classes as abstractions, is of secondary
importance in Logtalk.

Logtalk prototypes are defined by a set of predicates, with no a priori distinction
between methods and attributes. This is a feature shared by some prototype-based
languages. For example, in Self [60], objects are composed by slots that can contain
both data and procedures. In Logtalk, encapsulation is defined in a per-predicate basis
by declaring the predicate scope to be either private, protected, or public.

1.8.2 Object creation and evolution

A prototype can be created either by extension of existing prototypes or from scratch
(creation ex-nihilo). In both cases, the creation of a new prototype can be performed by
compiling a source file containing the prototype textual representation or, at runtime,
by using the Logtalk built-in predicate create object/4, as explained in this chapter.

There is currently no built-in support for object creation by cloning an existing
object, although Logtalk provides the necessary built-in predicates and built-in methods
(described in Chapter 3) for defining a cloning method.

As far as object evolution is concerned, Logtalk supports the declaration, definition,
and abolishing of object predicates at runtime, using object database built-in methods
that will be described in Chapter 3.

42 Chapter 1. Objects

1.8.3 Inheritance and life-time sharing between objects

Logtalk supports the definition of prototype hierarchies using an extension relation be-
tween prototypes. The extension relation (that is, the relation between a prototype and
its parent prototypes) is hard-coded during prototype creation for performance reasons,
preventing a straightforward implementation of dynamic inheritance (usually performed
by changing parent links at runtime).

Logtalk supports both life-time sharing and creation-time sharing between a pro-
totype and its parents, in a per-predicate basis. Therefore, modifications to a parent
prototype may or may not be inherited by its descendant prototypes, depending on how
the modification is performed.

1.8.4 Extensions, delegation and sharing

As will be discussed in Chapter 2, Logtalk does not provide a message delegation mech-
anism. Nevertheless, note that sending a message to self from within a prototype is
equivalent to delegating the message to the parent prototypes.

In Logtalk, property sharing and value sharing are not a characteristic of the ex-
tension link between a prototype and its parents, but a consequence of how we use the
Logtalk built-in methods for predicate modification to implement an assignment opera-
tion. In fact, there is no assignment primitive in Logtalk. What the language provides
is a set of built-in methods that enable a predicate definition to be either abolished,
retracted, or asserted. As methods, the object that gets modified is determined by the
execution context of the assert and retract messages. Thus, we can use, in the same
prototype, property sharing for some predicates and value sharing for other predicates.
An example of both types of sharing is included in Chapter 3. This support for both
property sharing and value sharing enables us to represent entities of the application
domain by one or more prototypes. Thus, parent (extension) links may behave similarly
to “is–a” links for some predicates but not for others.

1.9 Logtalk as a class-based language

This section summarizes Logtalk features as a class-based object-oriented language. It
may be used for comparing Logtalk to other class-based programming languages.

1.9.1 Definition of classes and instances

Both classes and instances can be defined in a source file or created dynamically at
runtime. Classes and instances created at runtime are always dynamic entities. Classes
and instances defined in source files can be either dynamic or static. Dynamic entities
can be abolished at runtime. Thus, working with instances does not necessarily imply
runtime object creation. This contrasts to what happens with most object-oriented
programming languages. Defining instances in a file may also be considered an unusual
way of working with objects, but it complies with the Logtalk primary view of objects
as encapsulation units.

1.9. Logtalk as a class-based language 43

1.9.2 Methods and variables

Logtalk object predicates subsume the concepts of object methods and variables. A
detailed discussion on how to use predicates to easily implement concepts such as in-
stance variables, shared instance variables, class, variables, instance methods, and class
methods is carried out in Chapter 3.

1.9.3 Class interfaces

Logtalk supports the separation between implementation and interface through the defi-
nition of protocols. Protocols contain declarations of predicates that can be implemented
by any object. Like objects, protocols are first-class entities in Logtalk. A class may
implement several protocols and a protcol may be implemented by several classes. Pro-
tocols are presented in Chapter 4.

1.9.4 Component-based programming

Logtalk supports component-based programming through the definition of categories.
Categories contain declarations and definitions of predicates that can be imported by
any object. Like objects and protocols, categories are first-class entities in Logtalk. A
class may import several categories and a category may be imported by several classes.
Categories are presented in Chapter 5.

1.9.5 Class hierarchies

We can define single hierarchies (as in Smalltalk or Java) or multiple, independent class
hierarchies (as in C++). These hierarchies can use either single or multiple-inheritance.
In addition, an object may instantiate more than one class.

1.9.6 Metaclasses

In Logtalk, a class can be either an object (as in Smalltalk) or just a way of defining
instances (as in C++). Logtalk supports both views of a class, at the same time, in
the same application. Metaclasses can be defined for some classes or for all classes. We
can thus define reflective systems as found in languages such as Smalltalk. In addition,
metaclasses may be shared among classes or we may have one metaclass per class, similar
to the Smalltalk “shadow” metaclass hierarchy.

1.9.7 Abstract classes

An abstract class is a class that cannot be instantiated. This may happen because some
method is declared, but has its implementation deferred to some suitable subclass, or
simply because the class describes some abstraction that does not directly represents
concrete objects.

Most class-based languages, such as C++ and Java, support abstract classes. In
C++, a class containing a pure virtual method cannot be instantiated. In Java, a class
can be explicitly declared as abstract by the programmer using the keyword abstract
(even if it does not contain any undefined method). Other languages such as Smalltalk
have no mechanism for defining abstract classes. Logtalk uses an operational, rather
than declarative, definition of abstract class: a class is abstract if does not recognize

44 Chapter 1. Objects

any instance-creation message. Methods for instantiating classes are usually defined by
the programmer, and are based on the Logtalk built-in predicate for creating objects
described in this chapter (create object/4). This built-in predicate knows nothing
about abstract classes, being a basic building block for more feature-complete methods.
As such, it is always possible to use this predicate for instantiating any class in Logtalk.

1.10 Summary

Logtalk views objects as a solution for the encapsulation and reuse of predicates. As
such, the issues of dynamic state change, in the context of a logic programming language,
are outside the scope of this thesis. Logtalk objects provide a way of organizing and
reusing Prolog code, helping to solve the software engineering problems typical of large
programs.

Logtalk objects can be defined in a source file or created dynamically at runtime. An
object can be defined as either a static or a dynamic entity. For example, an instance
can be defined as a static entity in a source file, in accordance with the primary view of
objects as encapsulation units.

Logtalk view of objects as encapsulation units is carried further into the concepts
of classes and prototypes. In Logtalk, the main difference between a prototype and a
class is that a prototype is a self-describing object, while a class encapsulates predicates
to be reused by other objects. That is, classes and prototypes imply different forms of
predicate encapsulation and reuse.

As a Prolog object-oriented extension, Logtalk differentiates itself from other exten-
sions first and foremost because of its broad compatibility with Prolog compilers and the
ISO Prolog standard. Moreover, unlike some other extensions, Logtalk is not focused
in bringing to Prolog the programming style typical of object-oriented languages such
as C++ that evolved from imperative languages. As such, Logtalk does not provide
destructive assignment primitives and does not make a distinction between attributes
and methods. In addition, Logtalk is one of the few Prolog object-oriented extensions
that is not a proprietary, commercial product.

As an object-oriented programming language, Logtalk supports several types of ob-
ject systems. Logtalk supports at the same time, in the same application, the definition
of classes and prototypes, of single and multiple independent hierarchies of objects (us-
ing single or multiple inheritance). Moreover, class hierarchies may define metaclasses
for some of for all classes, enabling the construction of reflective systems. All types of
object systems are supported in an equal basis, by the same set of language primitives.
Logtalk does not favor one system type over another. As such, Logtalk can be viewed
is a neutral, unbiased language. In addition, Logtalk language primitives (control con-
structs, built-in predicates, and built-in methods) may be used to build higher-level
behavior for implementing other types of class-based systems.

Logtalk integration of classes and prototypes in a single language allows us to use
the same message sending mechanisms and the same methods for dynamically creating,
disposing, and enumerating objects. Although we cannot mix prototypes with classes
and instances in the same hierarchy, we can freely exchange messages between them.

Logtalk prototypes can be used as a replacement for modules in Prolog programs,
providing several important features not available in current Prolog module systems.
Namely, prototypes provide data hiding, a feature missing in module systems. In ad-

1.10. Summary 45

dition, Logtalk provides a level of compatibility with Prolog compilers not matched by
any module system. This makes a Logtalk program much more portable than a Prolog
program that uses modules. Other important advantages of Logtalk objects over Prolog
modules will be described in later chapters.

Chapter 2

Control constructs

Logtalk adds four new control constructs to those defined on the ISO Prolog standard:
three control constructs for message sending and one control construct for calling ex-
ternal code, thus bypassing the compiler. All the control structures defined on the ISO
standard can also be used in Logtalk as well.

This chapter begins by presenting the Logtalk message sending operators. Secondly,
the control construct for calling external code is presented. Thirdly, the use of metapred-
icates as messages is discussed. Next, the message processing mechanism is explained.
Finally, the Logtalk stance on, and alternative to the use of, message delegation is
presented.

2.1 Message sending

Calling a predicate declared in an object interface is accomplished via message sending.
Note that message sending is only the same as calling an object predicate if the object
does not inherit predicate definitions from other objects. Otherwise, the predicate def-
inition that will be executed may depend on the relationships of the object with other
Logtalk entities.

2.1.1 Message sending operators

Logtalk uses the following three operators for message sending:

:- op(600, xfx, ::). % message to an object
:- op(600, fx, ::). % message to self
:- op(600, fx, ^^). % super call

These operator definitions are compatible with the predefined operators described in the
ISO Prolog standards. Some Prolog object-oriented extensions such as OL(P) [52] and
SICStus Objects [24] also use the ::/2 operator for message sending, while others, such
as L&O [23], use the :/2 operator. However, this second operator is already defined
in the ISO standard for the Prolog module system. Logtalk, like other systems, uses a
different operator in order to prevent conflicts when using modules and objects in the
same application.

47

48 Chapter 2. Control constructs

2.1.2 Messages to objects

Sending a message to an object is accomplished by using the ::/2 infix operator:

| ?- Object::Message.

The message must match a public predicate declared for the receiving object, a Logtalk
built-in predicate, a Prolog built-in predicate, or a Prolog control construct, otherwise
an error will be thrown (the appendix B contains a detailed description of the possible
error messages).

The pattern Object::Message acts as a Prolog goal and it can be used as such with
any ISO Prolog defined control constructs. For example, using the if-then-else Prolog
control construct, we can write calls such as:

| ?- Obj1::Msg1 -> Obj2::Msg2; Obj3::Msg3.

Logtalk also adopts and extends the Prolog control constructs for conjunction and dis-
junction, providing some convenient syntactic sugar to send a set of messages to a set
of objects, as described next.

2.1.3 Broadcasting

In Logtalk, broadcasting is interpreted as the sending of a message to a set of objects,
sending of a set of messages to an object, or sending of a set of messages to a set of
objects, adopting the definitions found in [23]. All these needs can be fulfilled by using
the message sending method described in the previous section. However, for convenience,
Logtalk implements an extended syntax for message sending that makes programming
easier in those situations. This extended syntax uses the usual conjunction (’,’/2)
and disjunction (’;’/2) operators of Prolog, retaining their meaning. Note that this
extended syntax exists for programmers convenience and does not necessarily imply any
performance gains over sending one message to one object at a time.

Sending a set of messages to an object

To send a set of messages (as a conjunction of goals) to the same object, we can write:

| ?- Object::(Message1, Message2, ...).

This is semantically equivalent to:

| ?- Object::Message1, Object::Message2,

When using disjunction we can write:

| ?- Object::(Message1; Message2; ...).

This is semantically equivalent to:

| ?- Object::Message1; Object::Message2;

2.1. Message sending 49

Sending a message to a set of objects

To send the same message to a set of objects we can write:

| ?- (Object1, Object2, ...)::Message.

This has the same semantics as:

| ?- Object1::Message, Object2::Message,

We can also send the same message to a disjunction of objects by writing:

| ?- (Object1; Object2, ...)::Message.

This is semantically equivalent to:

| ?- Object1::Message; Object2::Message;

Sending a set of messages to a set of objects

To send a set of messages to a set of objects, we have:

| ?- (Object1, Object2, ...)::Messages.

This is equivalent to:

| ?- Object1::Messages, Object2::Messages, ...

Likewise, typing:

| ?- (Object1; Object2; ...)::Messages.

is equivalent to:

| ?- Object1::Messages; Object2:: Messages; ...

Thus, in this case, broadcasting a set of messages to a set of objects reduces to the case
of sending a set of messages to an object.

2.1.4 Messages to self

In defining a predicate, we often need to send a message to self, that is, to the same
object that has received the original message. This is accomplished in Logtalk through
the ::/1 prefix operator:

Predicate :-
...,
::Message,
...

This call can only be used in the body of a predicate definition. The broadcasting
constructs described in the previous section can also be used combined with this operator
as follows:

::(Message1, Message2, ...)

and, for disjunction:

::(Message1; Message2; ...)

A message must match a public or protected predicate declared for the receiving object
(self), a private predicate declared in the object sending the message (sender), a Log-
talk/Prolog built-in predicate, or a Prolog control construct, otherwise an error will be
thrown (see the appendix B for details).

50 Chapter 2. Control constructs

2.1.5 Calling redefined predicates

Sometimes, redefining an inherited predicate implies calling the inherited definition in
the new code. For this purpose, Logtalk provides a control structure similar to the super
primitive of Smalltalk, the ^^/1 prefix operator:

Predicate :-
..., % do something
^^Predicate, % call the inherited definition
... . % do something more

This call can only be used in the body of a predicate definition. Usually, its argument
will be the predicate we are defining, but this is not strictly necessary.

Calling a redefined predicate in a new definition amounts to specialize an inherited
definition, a concept similar to an object specialization by a descendant object. It is a
key technique when reusing and adapting existing code.

Multiple inheritance and super calls

With single inheritance, there is, at the most, one inherited predicate definition to call
using the super control construct. However, in case of multiple inheritance, there can
be more than one inherited definition. The one that will be called by the super control
construct is determined following the rules described in the previous chapter. In some
object-oriented languages such as C++ [8] it is possible to specify in this context, whose
inherited definition will be called by explicitly stating the class containing it. This is
not possible in Logtalk.

2.2 Calling external code

Sometimes we need to call external Prolog code within an object. By external code, we
mean code that is not encapsulated in other objects such as Prolog built-in predicates or
user-defined code, other than Logtalk. For example, assume that we want to construct
an object defining common comparison operations over fractions such as </2. If we
write the corresponding predicate as:

N1/D1 < N2/D2 :-
N1*D2 < N2*D1.

Logtalk will interpret this clause as a recursive definition as expected. However, what
we want is to call the standard </2 Prolog built-in predicate in the body of the predicate
definition. For this code to work, we need a way to bypass the Logtalk compiler while
compiling calls in a clause body. The ISO Prolog standard defines that a compound
term with the functor {}/1 can be expressed by enclosing its argument between curly
brackets1. In Logtalk, we take advantage of this definition by using it as a control
construct to bypass the compiler: all calls encapsulated between “{” and “}” are copied,
unchanged, to the intermediate Prolog code that is generated when a Logtalk source file
is compiled. We can then solve our problem easily by writing:

1The definition is probably intended as a hook for the representation of DCG clauses, although the
standard does not mention them.

2.3. Control constructs and metapredicates as messages 51

N1/D1 < N2/D2 :-
{N1*D2 < N2*D1}.

An alternative solution will be to write:

N1/D1 < N2/D2 :-
user::(N1*D2 < N2*D1).

However, this is less efficient (uses message sending instead of a direct call) and more
verbose, hiding the fact that we are calling code that is not encapsulated on some object
(user is just a pseudo-object containing all Prolog code not contained in some Logtalk
entity).

Besides calling external code, the {}/1 control construct can also be used to set the
sender of a message to be other than the object from where the message is sent. For
example, if we write:

foo(X) :-
{obj::bar(X)}.

the sender of the bar/1 message to the object obj will be the pseudo-object user instead
of being the object encapsulating the predicate clause. This is an important technique
in the context of event-driven programming that will be further discussed in chapter 6.

2.3 Control constructs and metapredicates as messages

As stated before, we can use any ISO Prolog standard defined control construct in
Logtalk code as a message or as a call in the body of an object predicate clause. For
example the goal:

| ?- Object::call(Goal).

is equivalent to writing:

| ?- call(Object::Goal).

We can also use any Logtalk or Prolog built-in predicate as a message. Using a built-in
predicate other than a metapredicate results in a direct call of the predicate if it is
has not been redefined for the object receiving the message. The case of Logtalk or
Prolog built-in metapredicates, that are also built-in object methods, is similar to using
control constructs as messages2. For example, if we use the findall/3 built-in Prolog
meta-predicate as a message:

| ?- Object::findall(Variable, Goal, List).

the call can also be written as:

| ?- findall(Variable, Object::Goal, List).

Logtalk compiles control constructs and built-in metapredicates used as messages in
the body of object predicate clauses by moving the message sending inside the control
construct or metapredicate, as exemplified above.

2Note that the distinction between a control construct and a meta-predicate, found in the ISO Prolog
standard, is somewhat artificial: any control construct can be seen as a metapredicate.

52 Chapter 2. Control constructs

2.4 Message processing

Processing a message sent to an object (including self) involves four steps:

1. Finding the predicate declaration corresponding to the message.

2. Checking the declaration for message scope validity.

3. Finding the predicate definition (or method) to answer the message.

4. Executing the predicate definition.

In Logtalk, the lookup of the predicate declaration and predicate definition is performed
at runtime. In object-oriented programming, this is known as dynamic binding. When
the lookup is performed at compile time, we talk about static binding. There are pros
and cons to this design decision. On the pros side, we gain a very flexible development
workflow: a change in one object does not imply recompilation of all derivated and
related objects. This follows the typical Prolog development cycle where we often consult
a file, run and debug our predicates, and then reconsult the fixed code. On the cons
side, there is a performance penalty when compared to languages that support static
binding. When using single inheritance, the lookup cost is, in the worst case, linear to
the height of the inheritance tree. Binding messages to methods at compile time allows
us to optimize message sending by eliminating all but the last step in message processing.
It also allows us to catch some errors such as invalid messages. The Logtalk language
specification does not prevent the implementation of a compiler that uses, whenever
possible, static binding instead of dynamic binding. The drawbacks are a less flexible
development environment (changes in one file may imply recompilation and reloading of
several files) and maybe some restrictions on heavy self-modifying programs (redefining
an object may invalidate some optimizations in dependent objects).

2.4.1 Execution context

The execution context of an object predicate (method) consists of the following data:

• The sender of the message (always an object).

• The object containing the predicate definition under execution, this.

• The object that received the original message under processing, self.

All the execution context information can be explicitly accessed (and used in the defini-
tion of predicates) by the programmer by calling a set of built-in local methods that will
be described in the next chapter. The sender information is used in the implementation
of metapredicates and meta-calls. When using parametric objects, the value of each
parameter can be accessed via self.

The definition of self is the same as the one found in other Prolog object-oriented
extensions and in common object-oriented languages such as Smalltalk. Logtalk shares
the definition of this with OL(P), but this definition is different from the meaning of
the keyword in C++, where it represents the same concept as self.

2.5. Message delegation 53

2.4.2 Closed-world assumption

The ISO Prolog standard specifies (in its section 7.5) that calling a declared predicate
with no defined clauses should simply fail without raising an error3. This is sometimes
called the closed-world assumption: what we do not specify as true is considered false.
We adopt the same assumption in Logtalk: sending a valid message to an object for
which there is no defined method fails without any error. In the ISO standard, a
predicate is declared, if there is one dynamic, discontiguous, or multifile directive, which
specifies it. In Logtalk, an object predicate is declared if there is a scope directive fir it,
as will be discussed in the next chapter.

2.4.3 Exception handling

The message sending mechanisms always check if the receiver of a message is a defined
object and if the message corresponds to a declared predicate within the scope of the
sender. When those conditions are not met, an exception will be thrown. For example:

| ?- unknown::any.

! error(
existence_error(object, unknown),
unknown::any,
user)

Exceptions while processing a message may also result from the execution of a predicate
definition in response to the message. For example:

| ?- foo::abolish(bar/1).

! error(
permission_error(modify, private_predicate, bar(_)),
foo::abolish(bar/1),
user)

In all cases, the exception terms thrown while processing a message have the following
format:

error(Error, Message, Sender)

A complete and detailed description of the Logtalk control constructs exceptions can be
found in Appendix B.

2.5 Message delegation

Message delegation is a form of message sending where the method selected to answer
a message is executed in the context of the sender object, instead of being executed
in the context of the receiver object. In the context of a prototype hierarchy, message
delegation is equivalent to sending a message to self, whenever the receiver object is

3Note that this is different scenario from calling an unknown predicate: a declared predicate is known
by the system.

54 Chapter 2. Control constructs

a parent of sender object. Message delegation can be found on some prototype-based
languages, including the SICStus Objects Prolog object-oriented extension. Logtalk does
not support message delegation outside the scope of prototype hierarchies. Instead, the
type of code reuse enabled by message delegation is accomplished in Logtalk through
the use of categories (a category is a Logtalk entity that will be presented in Chapter
5). Nevertheless, Logtalk supports a limited form of message delegation through the
definition of object metapredicates, as it will be discussed in Chapter 3.

2.6 Summary

A Logtalk object encapsulates predicate definitions. These predicate definitions can be
called by sending a message to the object. Logtalk provides the usual message sending
mechanisms found in other object-oriented languages, including sending a message to the
object that received the original message under processing (self), and calling an inherited
definition when redefining a predicate. Logtalk also provides a control construct that
enables us to bypass the compiler when compiling a predicate definition.

Logtalk message sending mechanisms enforce the predicates declared scope, allowing
only the use of visible predicates as messages, preventing the misuse of encapsulated
private predicates. This basic feature, common to almost all object-oriented languages,
is absent from the ISO standard for the Prolog module system, where we can call any
encapsulated predicate as long as we know its name.

Chapter 3

Predicates

In Prolog, predicates are stored on a flat database and are used to describe what is true
about the application domain. In Logtalk, predicates are encapsulated inside objects
and are used to describe what is true about an application object (or set of objects).
Logtalk predicates represent both object state and object behavior.

When describing Logtalk predicates, we need to make a distinction between a predi-
cate declaration and a predicate definition. This distinction is necessary because Logtalk
encapsulates predicates inside objects. Access to an object predicate is controlled by its
declaration, a set of predicate directives, similar to Prolog predicate directives, which
declare predicate properties such as scope, compilation mode (static or dynamic), and
metapredicate arguments (if any). A predicate definition is simply a set of clauses for
the predicate encapsulated inside an object or category. Both predicate declarations and
definitions can be encapsulated inside objects and categories, while protocols can only
contain predicate declarations. Protocols are presented in Chapter 4, while categories
will be discussed in Chapter 5.

This chapter begins by describing how to declare and define object predicates. Sec-
ondly, it explains how to redefine and specialize object predicates in descendant objects.
Next, the Logtalk built-in object predicates (built-in methods) and built-in predicates
are described. Finally, several examples are presented, illustrating the use of object
predicates to represent the notions of object state and object behavior common in other
object-oriented languages.

3.1 Predicate declarations

All object (or category) predicates we want to access from other objects must be ex-
plicitly declared. A predicate declaration must contain, at least, a scope directive (de-
scribed below). Other directives may be used for documenting a predicate or to ensure
the proper compilation of predicate definitions. Predicates that are only used locally,
inside an object, and are called exclusively from other object predicates, do not need to
be declared.

3.1.1 Definitions

We start by defining a set of terms useful for the predicate classification that will be
used throughout this thesis:

55

56 Chapter 3. Predicates

Local predicate A local predicate is a predicate that is defined inside an object (or a
category) but that is not explicitly declared in a scope directive (described below).

Visible predicate A predicate that is declared for an object, a built-in method, a
Prolog built-in predicate, or a Logtalk built-in predicate. The set of an object
visible predicates is the set of predicates that can either be called from inside the
object or used as messages to the object.

Metapredicate A predicate where one (or more) of its arguments will be called as a
goal. For example, the predicate findall/3 is a Prolog built-in metapredicate.

Private predicate A predicate that can only be called from inside the object where
it is declared.

Protected predicate A predicate that can only be called from the object containing
the predicate declaration or from a descendant object that inherits the predicate
declaration.

Public predicate A predicate that can be called from any object.

3.1.2 Scope directives

As described above, a predicate can be public, protected, or private. A predicate is
identified by its name and number of arguments, using the familiar Prolog predicate in-
dicator notation <name>/<nargs>. The scope declarations are made using the directives
public/1, protected/1, and private/1. For example:

:- private(process_init_options/1).

:- protected(valid_init_option/1).

:- public(init/1).

Several predicates can be declared in a single directive by using an extended syntax
found in many Prolog compilers and formalized in the ISO standard: the directive
argument can be a predicate indicator, a list of predicate indicators, or a predicate
indicator sequence. For example:

:- private(is_option_list/1).

:- protected([valid_init_option/1, valid_release_option/1]).

:- public(init/1, release/1).

Note that we do not need to write scope directives for all defined predicates. Predicates
not described by a scope directive (either local or inherited) are assumed local. Local
predicates are invisible to the built-in reflection methods (described later on) and to the
message and event handling mechanisms.

There are some fundamental differences between Logtalk object predicates and ISO
Prolog module predicates [3] that should be stressed here. First, the meaning of public
and private predicates follows the usual definitions of public and private methods found

3.1. Predicate declarations 57

in most object-oriented programming languages. Unfortunately, the ISO Prolog module
system standard committee, choose to use these two terms to state whether the predicate
definition can be accessed using the clause/2 built-in predicate. Moreover, any module
predicate can be called from any other module by the use of explicit module qualification.
No predicate is private as long as we know its name. This is not possible in Logtalk,
where the message sending mechanisms check and enforce the predicate scope directives.

3.1.3 Mode directive

Most predicates cannot be called with arbitrary arguments. In addition, most predicate
arguments cannot have arbitrary instantiation modes. Predicate mode information is
used in the Prolog ISO standards [2, 3] and in most Prolog compiler manuals to document
built-in predicates. In Logtalk, the valid arguments and instantiation modes can be
documented by using the directive mode/2. For example:

:- mode(member(?, +), zero_or_more).

The first argument describes a valid calling mode. The minimum information will be
the instantiation mode of each argument. There are four possible values (described in
[2]):

+
Argument must be instantiated.

−
Argument must be a free (non-instantiated) variable.

?
Argument can either be instantiated or free.

@
Argument will not be modified (that is, further instantiated).

These four mode atoms are also declared as prefix operators by the Logtalk compiler.
This makes it possible to include type information for each predicate argument. We can
then rewrite the example above as:

:- mode(member(?term, +list), zero_or_more).

Some of the possible type values are:

• object, category, protocol

• event

• term, nonvar, var

• callable, compound, list

• atomic, atom

• number, integer, float

The first four values are Logtalk specific. The remaining values are common Prolog
types. We can also define our own types that can either be atoms or compound terms.
For example, we can use the compound term list(integer) to denote an argument

58 Chapter 3. Predicates

that should be a list of integer values. It is thus possible to write in Logtalk mode
declarations derived from those found in the ISO standard and in many Prolog compiler
manuals.

The second directive argument documents the number of proofs (or solutions) for the
specified mode. Meaning, the predicate deterministic type for the specified call mode.
The possible values are:

zero
Predicate always fails.

one
Predicate always succeeds once.

zero or one
Predicate either fails or succeeds once.

zero or more
Predicate may fail or succeed one or more times.

one or more
Predicate succeeds at least once.

error
Predicate will throw an error.

Notice that mode declarations can also be used to document those call modes that throw
an error. For instance, regarding the arg/3 ISO Prolog built-in predicate, we may write:

:- mode(arg(+, -, +), error).

A possible extension would be to use a compound term error/1 for the second argument
instead of the error atom, enabling the specification of the error term that will be
thrown. For example:

:- mode(arg(+, -, +), error(instantiation_error)).

However, this was deemed too cumbersome at the time the directive was designed. More
importantly, not all error terms can be completely specified this way. For example, the
first argument of the arg/3 predicate must be an integer, otherwise the error term
type error(integer, N) should be thrown. Writing a mode declaration such as:

:- mode(arg(+, -, +), error(type_error(integer, N))).

is not an acceptable solution. In fact, it is not clear whether the variable N refers to the
first argument of the predicate or not and, even if we include type information (there is
only one integer argument), the use of a non-instantiated variable occurring only once
does not make sense.

Note that most predicates have more than one valid call mode, thus implying the
use of several mode directives. For example, to document the possible call modes of the
ISO Prolog built-in predicate atom concat/3, we would write:

:- mode(atom_concat(?atom, ?atom, +atom), one_or_more).
:- mode(atom_concat(+atom, +atom, ?atom), zero_or_one).

The current Logtalk implementation just parses and then discards this directive. How-
ever, it is possible (easy in fact) to modify the current implementation of the Logtalk

3.1. Predicate declarations 59

compiler to output mode directives suited for a Prolog compiler that would take advan-
tage of them. Mode directives may also be used for type-checking method arguments
in a future Logtalk release (an argument type information could be interpreted as the
functor of a predicate used for testing actual argument values). Nevertheless, the use of
mode directives is a good starting point for the documentation of object predicates.

A bit of history

A predicate instantiation mode directive, mode/1, was first introduced in the DEC-10
Prolog system [61, 62]. In this system, mode directives are used to improve performance,
by allowing the compiler to produce more compact code (storage was a big issue at that
time). Few of the Prolog compilers that are actively maintain today, support mode
directives. One of them is ECLiPSe [63]. ECLiPSe mode directives are used to produce
more compact and efficient code. Unlike Logtalk, in the DEC-10 and ECLiPSe compilers,
mode directives only allow the specification of the predicate arguments’ instantiation
modes, but not the predicate deterministic type. The XSB logic programming system
[64] also supports mode directives, but the compiler uses them only as tabling directives.
The Mercury language [65, 66], also a logic programming language, supports mode
directives similar to Logtalk’s but uses a different, although equivalent set of atoms to
declare the number of solutions: erroneous (error), det (one), multi (one or more),
failure (zero), semidet (zero or one), and nondet (zero or more) [67]. Mercury
mode directives are used by the compiler to improve code generation and optimization.

Most Prolog compilers such as YAP [68], Quintus Prolog [36], SICStus Prolog [24],
SWI-Prolog [69], or BinProlog [70] accept mode directives, but only for documenting
predicates and for compatibility with other Prolog compilers. The predicate call mode
information is not used by the compiler to optimize code.

Some compilers define additional modes to provide further information about a pred-
icate behavior. For example, in the Quintus Prolog mode declaration, the atom “*”
signals a nondeterministic output argument while the atom “−” represents a determin-
istic output argument. Furthermore, Quintus uses “+” as the ISO “@” and defines two
extra mode atoms for input arguments (“+*” and “+−”). The reason for of all these
extra mode atoms is to provide useful information about the deterministic nature of an
argument. Logtalk allows determinism to be declared in a per-call mode basis instead
of at the argument level. It is interesting to note that the specification of all the built-in
predicates in the ISO standard only requires four mode atoms.

3.1.4 Metapredicate directive

In Prolog, predicates that have arguments that will be called as goals, are named
metapredicates. Those arguments are named meta-arguments. When we encapsulate
a metapredicate inside a Logtalk object, the meta-arguments must be called in the con-
text of the object that sends the message invoking the metapredicate. To ensure that
these calls will be executed in the correct context, we need to use the metapredicate/1
directive. For example, the Prolog built-in predicate findall/3 would be declared as a
metapredicate by writing:

:- metapredicate(findall(*, ::, *)).

60 Chapter 3. Predicates

The predicate arguments in this directive have the following meaning:

::
Meta-argument that is called as a goal.

*
Normal argument.

This is similar to the declaration of metapredicates in the ISO Prolog Standard for
modules, except we use the atom “::” instead of “:”, in order to be consistent with the
message sending operators.

This directive must be included in every object containing a definition for the de-
scribed predicate, even if the predicate declaration is inherited from another entity1.
This will ensure the proper compilation of meta-arguments.

Example: tracing predicate calls

The following example is adapted from the ISO Prolog standard for the module system
[3]. The idea is to define an object containing a predicate that can be used to trace the
calls of predicates defined in other objects. By tracing, we mean printing the call term
before and after execution. If we were to name the object and the predicate, respectively,
tracer and trace/1, the corresponding Logtalk code would be as follows:

:- object(tracer).

:- public(trace/1).
:- metapredicate(trace(::)).

trace(Goal) :-
write(’call: ’), writeq(Goal), nl,
call(Goal),
write(’exit: ’), writeq(Goal), nl.

trace(Goal) :-
write(’fail: ’), writeq(Goal), nl,
fail.

:- end_object.

Note that the trace/1 predicate must be compiled in such way as its argument would
be called in the context of the object sending the message to the tracer object.

In order to test the tracer object and the trace/1 metapredicate, let me define
an object that implements the quicksort algorithm. The sort code is adapted from
an example in the SICStus Prolog User Manual [71]. It sends a trace/1 message to
the tracer object, enabling users to trace the calls to the sort/2 and partition/4
predicates, to learn how the quicksort algorithm works. Here is the Logtalk version:

:- object(sort(_Type)).

:- public(sort/2).

1This is necessary because, in Logtalk, each entity is compiled independently from other entities.

3.1. Predicate declarations 61

sort([], []).

sort([Head| Tail], Sorted) :-
tracer::(

trace(partition(Tail, Head, Small, Large)),
trace(sort(Small, Sorted1)),
trace(sort(Large, Sorted2))),

list::append(Sorted1, [Head| Sorted2], Sorted).

partition([], _, [], []).

partition([Head| Tail], Pivot, Small, Large) :-
parameter(1, Type),
(Type::(Head < Pivot) ->

Small = [Head| Small1], Large = Large1
; Small = Small1, Large = [Head| Large1]
),
partition(Tail, Pivot, Small1, Large1).

:- end_object.

The object parameter allows us to specify the type of the list elements by instantiating
it to an object defining the usual comparison predicates. An example of a call and its
output would be:

| ?- sort(user)::sort([3, 1, 4, 2, 9], Sorted).

call: partition([1,4,2,9],3,_358,_359)
exit: partition([1,4,2,9],3,[1,2],[4,9])
call: sort([1,2],_740)
call: partition([2],1,_967,_968)
exit: partition([2],1,[],[2])
call: sort([],_1300)
exit: sort([],[])
call: sort([2],_1539)
call: partition([],2,_1765,_1766)
exit: partition([],2,[],[])
call: sort([],_2093)
exit: sort([],[])
call: sort([],_2332)
exit: sort([],[])
exit: sort([2],[2])
exit: sort([1,2],[1,2])
call: sort([4,9],_2831)
call: partition([9],4,_3058,_3059)
exit: partition([9],4,[],[9])
call: sort([],_3391)
exit: sort([],[])

62 Chapter 3. Predicates

call: sort([9],_3630)
call: partition([],9,_3856,_3857)
exit: partition([],9,[],[])
call: sort([],_4184)
exit: sort([],[])
call: sort([],_4423)
exit: sort([],[])
exit: sort([9],[9])
exit: sort([4,9],[4,9])

Sorted = [1,2,3,4,9]
yes

In this example, the object parameter used is the pseudo-object user, which represents
the Prolog database. This implies that the list item comparisons are performed using
the standard Prolog built-in comparing predicates.

Metapredicate arguments as goal functors

Sometimes a metapredicate argument is not a goal but a functor or a compound term
that will be used to construct a goal. The metapredicate apply/2 is a familiar example.
The first argument of this predicate is a compound term that is extended with a list of
extra arguments, the predicate second argument. Assuming that we want to define a
meta object encapsulating the usual predicate definition, we could write something like:

:- object(meta).

:- public(apply/2).
:- mode(apply(+callable, +list), zero_or_more).
:- metapredicate(apply(::, *)).

apply(Pred, Args) :-
(atom(Pred) ->

Goal =.. [Pred| Args]
;
Pred =.. Old,
list::append(Old, Args, New),
Goal =.. New),

call(Goal).

:- end_object.

However, this code does not work as intended because the argument of the metacall is
not an argument of the metapredicate apply/2. The workaround is to define an auxil-
iary private metapredicate that will be called from apply/2. This auxiliary predicate
contains an extra argument that will be bound to the goal constructed in the previous
definition of apply/2:

:- object(meta).

3.1. Predicate declarations 63

:- public(apply/2).
:- mode(apply(+callable, +list), zero_or_more).

:- private(apply/3).
:- mode(apply(+callable, +list, -callable), zero_or_more).
:- metapredicate(apply(*, *, ::)).

apply(Pred, Args) :-
apply(Pred, Args, _).

apply(Pred, Args, Goal) :-
(atom(Pred) ->

Goal =.. [Pred| Args]
;
Pred =.. Old,
list::append(Old, Args, New),
Goal =.. New),

call(Goal).

:- end_object.

This code will work as expected because the sender context information will be passed
from the call of apply/2 to the call of apply/3. We can use the same workaround for
other common metapredicates such as call/N or mapping predicates.

Dynamic metapredicates

It is not possible to declare, at runtime, new dynamic metapredicates. That is because we
can declare a new (dynamic) predicate by asserting a clause for it but we cannot assert
a metapredicate directive (or any other directive for that matter). However, we can
always assert new clauses for dynamic metapredicates that are declared at compilation
time.

Metapredicates in the ISO Prolog standard

One of the stated goals of the ISO standard is “to promote the applicability and porta-
bility of Prolog modules (. . .)” (section 1 — Scope). The portability goal seams to
be forgotten when dealing with metapredicates. The standard proposal is to have a
colon sets calling context boolean flag to tell the programmer if access to the call-
ing context when programming metapredicates can be done using the :/2 operator.
Worse, if the flag value is false, then the mechanism for accessing the calling context
is left to the implementation! Therefore, the metapredicates that need to access the
calling context will only be portable to Prolog compilers either where the flag have
the value true or where the alternative mechanism of accessing the calling context is
the same. The syntax for the declaration of meta-predicates also depends on the value
of the colon sets calling context flag (section 6.1.1.4 — Metapredicate mode in-
dicators). If the flag is true, then the metapredicate mode indicator is a compound
term declaring whose arguments are meta-arguments. However, when the flag value is

64 Chapter 3. Predicates

false, the metapredicate mode indicator resumes to a predicate indicator in the form
Functor/Arity! Another roadblock to Prolog programs portability.

Metapredicate calls as message delegation

Calling a metapredicate through message sending can be interpreted as a limited form
of message delegation. This interpretation follows from the fact that metacalls (in
a metapredicate definition) are always executed in the context of the sender object.
However, messages to self in the body of the metapredicate definition are executed with
the self context information set to the receiver object. Contrary to what happens when
delegating a message, the value of self in the execution context of a metapredicate is not
set to the value of self of the execution context of the predicate responsible for sending
the message (that triggers the call to the metapredicate).

3.1.5 Discontiguous directive

The ISO Prolog standard discontiguous directive allows predicate clauses to be discon-
tiguous in a source file. In the same way, object predicate clauses may not be contiguous.
In that case, we must declare the predicate discontiguous by using the discontiguous/1
directive:

:- discontiguous(Functor/Arity).

With this directive, we can use the same extended syntax described for the scope di-
rectives. However, this is a directive that we should avoid to use because it makes our
code harder to read.

This directive must be included in every object containing a discontiguous definition
for the described predicate (even if the predicate declaration is inherited from other
entity).

3.1.6 Dynamic directive

Similar to Prolog predicates, an object predicate can be either static or dynamic. By
default, all object predicates are static. To declare a dynamic predicate we must use the
dynamic/1 directive:

:- dynamic(Functor/Arity).

Declaring dynamic predicates does not imply the use of dynamic objects. We can declare
and define any number dynamic predicates inside a static object.

This directive must be included in every object containing a definition for the de-
scribed predicate (even when the predicate declaration is inherited from other entity). If
we do omit the dynamic declaration, the predicate definition will be compiled as static
code, even if we are redefining an inherited dynamic predicate. Note that a static object
is free to declare and define dynamic predicates.

When compared to Prolog dynamic predicates, the semantics of the dynamic object
predicates are necessarily more elaborated, due to inheritance relations between objects.
This semantics will be fully discussed later on this chapter, in the section on Logtalk
built-in methods for object predicate database handling.

3.2. Predicate definitions 65

3.1.7 Documenting directive

A predicate can be documented with arbitrary user-defined information, by using the
info/2 directive:

:- info(Functor/Arity, List).

The first argument identifies the predicate. The second argument is a list of Key is
Value terms. For example, the predicate run/1 declared in the “Towers of Hanoi”
example on Chaper 1 could be documented as follows:

:- info(run/1, [
comment is ’Prints the problem solution for n disks.’,
argnames is [’Disks’]]).

This directive will be further discussed in Chapter 7.

3.1.8 Redeclaration of inherited predicates

When redeclaring an inherited predicate we are overriding it with the new declaration.
As consequence, any inherited predicate definition will no longer be available for the
descendant objects. The only sensible case where we may want to redeclare a predicate,
is when we need to change its scope. That is, redeclaring a predicate allows us to change
the scope of inherited predicates in a per predicate basis. To change the scope of all
inherited predicates at the same time, we can use protected or private inheritance, as
explained below.

3.2 Predicate definitions

As seen in most examples presented so far, we define object predicates as we have
always defined Prolog predicates, with the only difference that we have four more control
structures to play with (three message sending operators and an external call operator).
For example, if we wish to define an object containing common list predicates such as
append/3 or member/2 we could write:

:- object(list).

:- public(append/2).
:- public(member/2).

append([], L, L).
append([H| T], L, [H| T2]) :-

append(T, L, T2).

member(H, [H| _]).
member(H, [_| T]) :-

member(H, T).

:- end_object.

66 Chapter 3. Predicates

Note that, apart from the opening and closing object directives and the scope directives,
what we have written above is plain Prolog code. Calls in a predicate clause body
are compiled as calls to locally defined predicates, unless we use the message sending
operators or the external call operator. This allows an easy conversion from Prolog code
to Logtalk objects. For that, we only need to add the necessary encapsulation and scope
directives to the existing code. In other object-oriented extensions to Prolog such as
OL(P) [52] and SICStus Objects [24], calls in a predicate clause body must be prefixed
with the message sending operator in order to call the local definition. For example,
rewriting the object above for SICStus Objects results in the following code:

list :: {

append([], L, L) &
append([H| T], L, [H| T2]) :-

::append(T, L, T2) &

member(H, [H| _]) &
member(H, [_| T]) :-

::member(H, T) &

}.

The consequence is a more verbose code and the need to edit existing Prolog code when
encapsulating it inside objects.

3.3 Redefinition of inherited predicates

Inherited predicates can be redefined in a descendant object. The redefinition can be
a restriction of the scope of the inherited predicates or a redefinition of the inherited
predicate definitions. To restrict the scope of all inherited predicates we use public,
protected, and private inheritance. To redefine an inherited predicate definition we add
a local definition, which either overrides or specializes the inherited definition.

3.3.1 Public, protected, and private inheritance

Object extension, instantiation, and specialization relations are, by default, public.
Thus, all predicates maintain their scopes when inherited. We can also define pro-
tected and private object relations in order to restrict the scope of inherited predicates.
This is performed by prefixing, in the object-opening directive, the related object name
with the corresponding scope keyword. The most common use for protected and private
inheritance is to hide inherited protocol from object clients.

Logtalk implementation of public, protected, and private inheritance is similar to
C++ [8] and Java [9]. This concept is extended in Logtalk in order to also be applied
to protocol hierarchies, to protocol implementation by categories, and to object import
relations with categories, as will be explained in chapters 4 and 5.

In order to illustrate this feature, the object extension relation will be used. The
same syntax applies to the instantiation and specialization relations. To make all public
predicates declared via an extended object become protected, we write:

3.3. Redefinition of inherited predicates 67

:- object(Prototype,
extends(private::Parent)).
...

:- end_object.

To make all public and protected predicates declared via an extended object become
private, we write:

:- object(Prototype,
extends(protected::Parent)).
...

:- end_object.

Omitting the scope keyword is equivalent to writing:

:- object(Prototype,
extends(public::Parent)).
...

:- end_object.

Hence, by default, the scope of an object extension relation is public. The same rule
applies to object instantiation and object specialization relations. This makes it possible
to use a simplified syntax when protected or private inheritance is not necessary.

Finding the scope of object relations

The Logtalk built-in predicates presented in Chapter 1 for query the system about
object relations are simplified versions of extended built-in predicates that also return
the relation scope.

The built-in predicate extends object/3 returns prototype extension relations:

| ?- extends_object(Object, Parent, Scope).

The built-in predicate instantiates class/3 returns object instantiation relations:

| ?- instantiates_class(Instance, Class, Scope).

The built-in predicate specializes class/3 returns class specialization relations:

| ?- specializes_class(Class, Superclass, Scope).

The simplified version of these predicates simply ignore the relation scope, returning all
public, protected, and private relations.

3.3.2 Overriding inherited predicate definitions

When we define a predicate for which a definition is already inherited from an ancestor
object, the inherited definition is hidden by the new definition. This is called overriding
inheritance: a local definition overrides any inherited one. Assume, for example, we

68 Chapter 3. Predicates

have a class representing typical data about a person:

:- object(person,
instantiates(metaperson),
specializes(object)).

:- public(age/1, height/1, weight/1).

age(25). % default age value
height(170). % default height value
weight(75). % default weight value

:- end_object.

This class provides default values for a person attributes such as height/1, weight/1,
and age/1. Assume that we have the following class instance:

:- object(paul,
instantiates(person)).

age(37).
height(175).

:- end_object.

After compiling and loading these objects, we can check the overriding behavior by
trying the following query:

| ?- paul::(age(Age), weight(Weight)).

Age = 37
Weight = 75
yes

Some Prolog object-oriented extensions such as SICStus Objects implement different
behavior, where a new definition does not override the inherited ones. Instead, the new
definition will be an additional solution to the corresponding message. For the example
above, this design choice is clearly unwanted, but we can also find examples where the
Logtalk implementation fails to meet the desired results. It may be argued that the
Logtalk choice is more akin to common object-oriented languages, where extensions
like as SICStus Objects are more closer to the Prolog notion of multiple, alternative
solutions. However, the SICStus Objects behavior and other possible behaviors are easy
to code in Logtalk, using the super control construct, as explained bellow.

3.3.3 Specializing inherited predicate definitions

An inherited predicate can be specialized by calling it in the new definition. This is
accomplished by calling the ^^/1 operator in the new definition. A common example is
a hierarchy of objects where each object defines some initialization code. Each object
must perform, in addition to its own initialization code, any initializations inherited
from its ancestor objects. Assume, for example, that we have the following prototype:

3.3. Redefinition of inherited predicates 69

:- object(root).

:- public(init/0).

init :-
write(’root init’), nl.

:- end_object.

The definition of the predicate init/0 in a descendant prototype must call the inherited
definition:

:- object(descendant,
extends(root)).

init :-
write(’descendant init’), nl,
^^init.

:- end_object.

Sending the message init/0 to the object descendant results in the following output:

| ?- descendant::init.

descendant init
root init
yes

This is the basic form of predicate specialization. We can also use the ^^/1 operator to
code other interesting forms of specialization, as described next.

Union inheritance

Union inheritance is a variant of predicate specialization where all the definitions, both
new and inherited ones, are taken into account. This is accomplished by writing a clause
whose body contains only one call to the inherited definition (using the ^^/1 operator).
The relative position of this clause, among the remaining clauses, sets the calling order
for the local and inherited definitions. Consider the following example:

:- object(root).

:- public(foo/1).

foo(1).
foo(2).

:- end_object.

:- object(descendant,
extends(root)).

70 Chapter 3. Predicates

foo(3).
foo(Foo) :-

^^foo(Foo).

:- end_object.

| ?- descendant::foo(Foo).

Foo = 3 ;
Foo = 1 ;
Foo = 2 ;
no

Selective inheritance

Selective inheritance, sometimes also named differential inheritance [23], is a variant of
predicate specialization where we hide some of the inherited definitions. This form of
inheritance can be used in the representation of exceptions to generic definitions. Here
we will need to use the ^^/1 operator to test and possibly reject some of the inherited
definitions.

A typical example, adapted from L&O system cited above, is to define objects that
represent birds and penguins. In this example, we simplified the descriptions of these
classes of animals by restricting ourselves to the locomotion modes. For birds, we can
define the following object:

:- object(bird).

:- public(mode/1).

mode(walks).
mode(flies).

:- end_object.

Penguins are also birds, but they are unable to fly so we must exclude that locomotion
mode:

:- object(penguin,
extends(bird)).

mode(swims).
mode(Mode) :-

^^mode(Mode),
Mode \= flies.

:- end_object.

We can test our objects by calling the following goal:

3.4. Definite clause grammars 71

| ?- penguin::mode(Mode).

Mode = swims ;
Mode = walks ;
no

3.4 Definite clause grammars

Definite clause grammar rules [72] provide a convenient notation to represent the rewrite
rules common of most grammars in Prolog. In Logtalk, definite clause grammar rules
can be encapsulated in objects and categories. Currently, the ISO/IEC WG17 group [73]
is working on a draft specification [74] for a definite clause grammars Prolog standard.
Therefore, in the mean time, Logtalk follows the common practice of Prolog compilers
supporting definite clause grammars, extending it to support calling grammar rules
contained in categories and objects.

A common example of a definite clause grammar is the definition of a set of rules
for parsing simple arithmetic expressions:

:- object(calculator).

:- public(parse/2).

parse(Expression, Value) :-
phrase(expr(Value), Expression).

expr(Z) --> term(X), "+", expr(Y), {Z is X + Y}.
expr(Z) --> term(X), "-", expr(Y), {Z is X - Y}.
expr(X) --> term(X).

term(Z) --> number(X), "*", term(Y), {Z is X * Y}.
term(Z) --> number(X), "/", term(Y), {Z is X / Y}.
term(Z) --> number(Z).

number(C) --> "+", number(C).
number(C) --> "-", number(X), {C is -X}.
number(X) --> [C], {0’0 =< C, C =< 0’9, X is C - 0’0}.

:- end_object.

The predicate phrase/2 called in the definition of predicate parse/2 is a Logtalk built-
in method, similar to the predicate with the same name found on most Prolog compilers
that support definite clause grammars. After compiling and loading this object, we can
test the grammar rules with calls such as the following one:

| ?- calculator::parse("1+2-3*4", Result).

Result = -9
yes

72 Chapter 3. Predicates

In most cases, the predicates resulting from the translation of the grammar rules to
regular clauses are not declared. Instead, these predicates are usually called by using
the built-in methods phrase/2 and phrase/3. Nevertheless, in case we want to call
grammar rules the same way we call any other predicate, the corresponding predicate
arity will be the arity of the rule head plus two. For the above example, assuming that
we want the predicate corresponding to the expr/1 rule to be public, the declaration
would be:

:- public(expr/3).

In the body of a grammar rule, we can call rules that are inherited from ancestor objects
(or imported categories) or contained in other objects. This is accomplished by using
non-terminals as messages. Using a non-terminal as a message to self allows us to call
grammar rules in categories and ancestor objects. To call grammar rules encapsulated
in other objects, we use a non-terminal as a message to those objects. An example of
composing grammar rules split in categories will be presented in Chapter 5. Along with
the message sending operators (::/1 and ::/2), we can also use the control constructs
\+/1, !/0, ;/2, ->/2, and {}/1 in the body of a grammar. In addition, grammar
rules may contain metacalls (a variable taking the place of a non-terminal), which are
translated to calls of the built-in method phrase/3.

3.5 Built-in methods

Logtalk defines a set of built-in object predicates or built-in methods for accessing
message execution context, finding sets of solutions, inspecting object predicates, and
object database handling. Every Logtalk built-in method checks the type and mode of
its calling arguments, throwing an exception in case of misuse. Similar to ISO Prolog
built-in predicates, these built-in methods cannot be redefined. An exception will also be
thrown if we attempt to redefine a Logtalk built-in method inside an entity. This section
contains a brief description of these methods. The full specification of each method
is contained in the Appendix B. Most built-in methods are based on the predicates
specified in the ISO Prolog standards with the same name, contributing to a smooth
learning curve for Prolog programmers.

3.5.1 Execution context methods

Logtalk defines four local built-in methods for accessing a method execution context
and an object parameter values. A local built-in method can only be called directly,
i.e., it cannot be used as a message to other objects (including self). The Logtalk
pre-processor translates the calls of these built-in execution context methods to simple
variable unifications that are performed at compilation time. We can thus use these
methods freely without worrying about performance penalties.

To find the object that has received the current message we may use the method
self/1. We may also retrieve the object that has sent the current message by using
the method sender/1. The method this/1 allows us to retrieve the name of the object
containing the code being executed, instead of hard-coding the object name in a predi-
cate definition. This helps to avoid bugs in our code, should we later decide to change
the object name and forget to change the name references.

3.5. Built-in methods 73

Here is a simple example of how to use these object execution context methods,
consisting of two simple objects: a root object and a descendant object. The root object
declares and defines a predicate, test/0, which calls the built-in context methods:

:- object(root).

:- public(test/0).

test :-
write(’Executing a predicate definition stored in ’),
this(This), writeq(This), nl,
write(’to answer a message received by ’),
self(Self), writeq(Self), nl,
write(’that was sent by ’),
sender(Sender), writeq(Sender), nl, nl.

:- end_object.

The descendant object simply extends the root object:

:- object(descendant,
extends(root)).

:- end_object.

After compiling and loading these two objects, we can try the following goal:

| ?- descendant::test.

Executing a predicate definition stored in root
to answer a message received by descendant
that was sent by user
yes

For parametric objects, the method parameter/2 enables us to retrieve current param-
eter values. The first argument is the parameter position in the object identifier (a
compound term), while the second argument is the parameter value. For example:

:- object(block(_Color)).

:- public(test/0).

test :-
parameter(1, Color),
write(’Color parameter value is ’),
writeq(Color), nl.

:- end_object.

74 Chapter 3. Predicates

After compiling and loading this object, we can try the following goal:

| ?- block(blue)::test.

Color parameter value is blue
yes

Note that we may also use the method this/1 to retrieve parameter values. For the
example above, the definition of the test/0 predicate could be rewritten as:

test :-
this(block(Color)),
write(’Color parameter value is ’),
writeq(Color), nl.

However, this solution is not recommended because it implies that we have to hard-code
the name of the object as the argument of the this/1 call. The same reason has leaded
us to include this built-in method in the first place.

3.5.2 Database methods

Logtalk provides a set of built-in methods for object database handling, similar to
the usual Prolog database predicates: abolish/1, asserta/1, assertz/1, clause/2,
retract/1, and retractall/1. These predicates, called either as implicit or explicit
messages, always operate on the database of the object receiving the message.

Static versus dynamic predicate declarations

In the following sections, I will need to make a distinction between a static predicate
declaration and a dynamic predicate declaration. A static predicate declaration is a
declaration that exists at entity creation time. That is to say, a declaration contained
either in an object source file or in the arguments of the object creation built-in pred-
icate, create object/4, introduced in Chapter 1. A dynamic predicate declaration is
a declaration that is (automatically) generated when we assert, at runtime, clauses for
a new predicate into an object. Note that the concepts of static and dynamic predi-
cate declarations are orthogonal to the concepts of static and dynamic objects. Static
predicate declarations cannot be abolished during the lifespan of the container object.
This is a conservative restriction intended to avoid problems with other objects defin-
ing or calling the predicate. Dynamic predicate declarations can be freely created and
abolished at runtime.

Asserting predicate clauses

Predicate clauses can be asserted into an object using the built-in methods asserta/1
and assertz/1. Similar to the Prolog built-in predicates with the same name, the first
method asserts a clause as the first one for the predicate, while the second method
asserts the clause as the last one for the predicate. In both cases, when the message
is valid, the new clause is asserted in the object receiving the message. The asserting
message is valid either if the asserted predicate is not declared for the object, or if it is
declared as dynamic and within the scope of the sender.

3.5. Built-in methods 75

Let me illustrate the possible cases using the assertz/1 built-in method. The same
rules do apply to the asserta/1 method. A direct call of the assertz/1 method such
as:

Predicate :-
...,
assertz(Clause),
... .

asserts a clause in the database of the object containing the predicate definition which
makes the call, this. If the predicate has already been declared, it must have been
declared as dynamic, otherwise an error will be thrown. If the predicate has not been
yet declared for this, then a dynamic predicate declaration, with scope private, will be
generated. If we need that the new predicate be declared public but still assert the
clause in this, we can write instead:

Predicate :-
...,
this(This),
This::assertz(Clause),
... .

We can also send the assertz/1 message to self :

Predicate :-
...,
::assertz(Clause),
... .

If the predicate has already been declared for self, then the predicate must have been
declared as dynamic and within the scope of the sender of the message. That is, the
predicate must be either public or protected. The predicate can also be private if it is
declared in the sender of the message.

If the predicate has not yet been declared for self, then a dynamic predicate dec-
laration, with scope protected, will be generated. If we need the new predicate to be
declared public, but still assert the new clause in self, we can write, instead:

Predicate :-
...,
self(Self),
Self::assertz(Clause),
... .

Sending an assertz/1 message to an object (other than this or self) asserts a new
clause on the object if the corresponding predicate has not been yet declared yet or if it
has already been declared as public and dynamic:

| ?- Object::assertz(Clause).

If the predicate has not been yet declared for the object, then a dynamic predicate dec-
laration, with public scope, will be generated. When the predicate is declared protected
or private, or is alternatively, public, but declared static, then an error will be thrown.

76 Chapter 3. Predicates

It is important to note that asserting a clause for a new predicate into an object
does not imply that we can send the corresponding message to the object. That is only
valid for prototypes but not for classes and instances due to the inheritance rules of
class-based hierarchies. Assume, for example, that we have compiled and loaded the
following two objects, a class and a class instance:

:- object(class,
instantiates(metaclass)).

:- end_object.

:- object(instance,
instantiates(class)).

:- end_object.

Assuming that metaclass contains no predicate declarations, let us now add a new
predicate, p/1, to class, using the assertz/1 built-in method:

| ?- class::assertz(p(1)).

yes

However, if we try to send the message p/1 to class, an exception will be thrown:

| ?- class::p(X).

! error(
existence_error(predicate_declaration, p(_)),
class::p(_),
user)

For class to understand the message p/1, the corresponding predicate must have been
declared in its class, metaclass, or in a metaclass superclass. The message is only
valid for the descendant instances of class:

| ?- instance::p(X).

X = 1
yes

Retracting predicate clauses

Logtalk provides two built-in methods for retracting predicate clauses: retract/1 and
retractall/1. The first method is similar to the predicate defined in the ISO Prolog
standard with the same name. The second method has no corresponding predicate in the
standard, but it is similar to a predicate available in most Prolog compilers with the same
name. It allows us to retract all clauses whose head matches the method argument. Both
methods operate on the database of the object receiving the corresponding messages.
The same scope rules described for the asserting built-in methods do apply here: the

3.5. Built-in methods 77

predicate for which we want to retract clauses must be within the scope of the sender
of the retracting message.

The ISO Prolog standard states that retracting all clauses for a dynamic predicate
does not abolish the predicate. Logtalk has adopted this rule, but the inheritance
mechanism between objects implies some non-obvious consequences that I am going to
illustrate through an example. Assume that we have compiled the following two objects:

:- object(root).

:- public(p/1).
:- dynamic(p/1).

p(root).

:- end_object.

:- object(descendant,
extends(root)).

:- end_object.

Sending the message p/1 to the object descendant returns the value inherited from the
parent prototype, as expected:

| ?- descendant::p(Value).

Value = root
yes

Asserting a clause for the predicate p/1 in descendant overrides the inherited definition:

| ?- descendant::(assertz(p(descendant)), p(Value)).

Value = descendant
yes

After retracting all clauses for the p/1 predicate from descendant, the message p/1
returns, once again, the inherited value as could be expected:

| ?- descendant::(retractall(p(_)), p(Value)).

Value = root
yes

For those with an object-oriented background, this is the expected outcome: looking up
a method to answer the message p/1 will lead us to the definition in root. However,
another interpretation is possible when we apply the closed-world assumption to the
local database of the object descendant: after retracting the definition of p/1 from
descendant, the predicate should fail in subsequent calls2. In the Logtalk design, the
first interpretation was chosen, as illustrated in the example above. Besides, we can

2Under the closed-world assumption, everything that is not declared true, is false.

78 Chapter 3. Predicates

always assert the clause:

p(_) :-
fail.

in the object descendant if the second interpretation should be necessary.

Abolishing predicates

As in Prolog, only dynamic predicates can be abolished. In Logtalk, abolishing a pred-
icate implies abolishing its declaration (represented in source code by a scope direc-
tive). The same scope rules that we mentioned before, when describing the asserting
and retracting built-in methods, apply to the built-in method abolish/1: the dynamic
predicate that we wish to abolish must be within the scope of the object sending the mes-
sage. In addition, the predicate must be declared on the object receiving the abolishing
message.

However, because a predicate can be shared among several objects via inheritance,
some restrictions are necessary in order to avoid inconsistency problems such as abol-
ishing a predicate that is defined in descendant objects. In the first place, we can
only abolish dynamically declared predicates. Secondly, we cannot abolish predicates
declared in protocols or categories. The reason is simple: the same protocol may be
implemented by several objects, and the same category may be imported by several
objects. Besides, we can only send messages to objects.

3.5.3 Reflection methods

In other object-oriented languages such as Java, methods which enable us to query about
an object methods and variables, are known as reflection methods. I have adopted the
same terminology. Logtalk provides two built-in methods for inspecting object predi-
cates. The first method, current predicate/1, enables us to query about user predicate
declarations. The second method, predicate property/2, returns predicate properties.
Both predicates were adapted, with some semantic changes, from the predicates with
the same name specified in the ISO Prolog standards. These two predicates were de-
fined in most Prolog compilers long before the standardization process, although there
are some differences between implementations. The DECsystem-10 Prolog [61] defined
a current predicate/2 predicate, while Quintus Prolog [36] introduced the predicate
predicate property/2.

There are two possible semantics for these reflection methods, corresponding to dis-
tinct points of view: the database view and the protocol view. In the database view,
the reflection methods return information about the predicates declared inside an ob-
ject. With this view, an object database may be inspected in the same way as a Prolog
database. In the protocol view, the reflection methods return information about the
visible predicates of an object, from the point-of-view of the sender. That is, the ob-
ject interface or protocol. Both views return the same results for prototypes, but not
for classes and instances. In fact, a prototype declares predicates for itself and for
its descendants, while a class declares predicates for its instances but not for itself3.
Logtalk implements the protocol view. It is interesting to note that the database view

3Not entirely true: a class may instantiate itself, as it often happens when programming class-based
reflexive systems.

3.5. Built-in methods 79

would reflect the Logtalk Prolog roots while the protocol view reflects its object-oriented
nature.

Finding declared predicates

We can find all visible user-declared predicates, using backtracking, by calling the built-
in method current predicate/1. This method can be used to check whether a message
to an object is valid or to enumerate an object protocol. Similar to the corresponding
ISO Prolog predicate, all user predicates are found, whether they are static or dynamic.
However, the ISO definition is extended to support and enforce predicate scope declara-
tions. A direct call of this built-in method, without using the message sending operators,
such as:

Predicate :-
...,
current_predicate(Functor/Arity),
... .

returns all public, protected, and private predicates declared for the object.
If the message is sent from inside an object to self :

Predicate :-
...,
::current_predicate(Functor/Arity),
... .

then the call will return public and protected predicates declared for self, and private
predicates declared in the sender for self (via inheritance), corresponding to the mes-
sages that we can send to self. Note that the private predicates of self itself are not
returned because we are not sending the message from inside of it (unless, of course, self
and sender are the same object).

If we send the message to an object other than this or self, as follows:

| ?- Object::current_predicate(Functor/Arity).

the call only returns public user predicates. This happens because we can only see the
public interface from outside an object.

Note that the built-in method current predicate/1 returns an object interface as
it is seen from the sender object, and not the predicates declared inside an object,
matching the design decisions in the specification of the database handling methods.
For prototypes, the method behavior is similar to the behavior of the predicate with
the same name defined in the ISO standard for Prolog modules. However, the same is
not true for classes and instances due to the different inheritance rules of prototype and
class-based hierarchies.

Predicate properties

The properties of a visible predicate can be retrieved by sending to an object the message
predicate property/2. By design, this method enforces the predicate scope declara-
tions. To enumerate the properties of a predicate visible in this, using backtracking, we

80 Chapter 3. Predicates

should call the method directly, without using the message sending operators:

Predicate :-
...
predicate_property(foo(_), Property),
... .

To enumerate the properties of self predicates visible from the sender, using backtrack-
ing, we will write:

Predicate :-
...
::predicate_property(foo(_), Property)
... .

To enumerate the properties of a public predicate visible in an object (other than self
or this), using backtracking, we will write:

| ?- Object::predicate_property(foo(_), Property)

The possible predicate property values are:

• public, protected, private — predicate scope

• static, dynamic — predicate compilation mode

• built in — predefined predicate

• metapredicate(Mode) — metapredicate template

• declared in(Entity) — entity containing the predicate scope directive

• defined in(Entity) — entity containing the predicate definition that will be
used to answer the corresponding message sent to the object that we are querying
for the predicate properties

The properties declared in/1 and defined in/1 do not apply to built-in methods and
Logtalk/Prolog built-in predicates. This set of properties is similar to the one defined
in the ISO Prolog standard for modules, with an important difference: the properties
public, protected, and private are scope properties and do not specify (as in the
ISO standard) if a predicate definition can be retrieved by using the clause/2 built-in
predicate.

Note that calls such as the following one do not work:

| ?- predicate_property(bar::foo(_), Property).

because the first argument is not interpreted as a goal and this ISO Prolog specified
built-in predicate knows nothing about Logtalk objects and messages.

3.5. Built-in methods 81

Reflection built-in predicates in the ISO Prolog standard

The ISO standard for the Prolog module system specifies a predicate property/2
built-in predicate (section 7.2.2). Together with the current predicate/1 built-in
predicate standardized in the first part of the ISO standard, they enable a Prolog pro-
grammer to perform some sorts of reflective computations. An annoying detail of the
ISO definition of the predicate property/2 predicate is the poor choice of the atoms
public and private to denote when a predicate definition can be retrieved using the
built-in predicate clause/2. In most programming languages, including probably all
object-oriented programming languages, a public procedure is one that can be called
from outside its encapsulation unit, while a private procedure can only be called from
inside. Using the same property names for denoting source code access will only cause
trouble in the eventuality of a future revision that adds scope rules and scope predicate
properties to the Prolog module system standard. Meanwhile, it will be a source of
misunderstandings and a nuisance for those who come to Prolog with a background in
object-oriented languages.

3.5.4 All solution methods

The usual meta-predicates for finding all solutions for a query are available in Logtalk
as predefined methods: bagof/3, findall/3, and setof/3. There is also a forall/2
method that implements a generate and test loop. These built-in methods can be used
as follows:

| ?- Object::bagof(Term, Pred, List).

or, equivalently:

| ?- bagof(Term, Object::Pred, List).

Both goals give the same results. There is no advantage, other than code clarity, to
prefer one form to the other.

3.5.5 Event handler methods

Logtalk support for event-based programming assumes that any object playing the role
of a monitor defines two event handler methods: before/3 and after/3. These methods
will be discussed in Chapter 6.

3.5.6 Definite clause grammar parsing methods

As discussed in the previous section, Logtalk supports two definite clause grammar pars-
ing built-in methods, phrase/2 and phrase/3, with definitions similar to the predicates
with the same name found on most Prolog compilers that support definite clause gram-
mars. At the time this thesis was written, Logtalk support for definite clause grammars
was feature in active development. For example, the current implementation of the
parsing methods only accepts as first argument a non-terminal instead of a rule body.
Nevertheless, the Logtalk translator for definite clause grammar rules already outputs
correct results for all test cases that have been tried, including some hard ones where
some commercial Prolog compilers fail to give the expected translation, although the
meaning of “correct translation” is still the source of some disagreement among the
Prolog community.

82 Chapter 3. Predicates

3.6 Built-in predicates

Logtalk adds a new set of built-in predicates to those already specified in the ISO Prolog
standard. This set includes predicates for:

• Enumerating objects, categories, and protocols

• Enumerating object, category, and protocol properties

• Enumerating object, category, and protocol relations

• Creating and abolishing objects, categories, and protocols

• Defining, enumerating, and abolishing events and monitors

• Compiling and loading objects, categories, and protocols

• Enumerating and setting compiler options

Some of these predicates have already been described in Chapter 1. The remaining
built-in predicates will be introduced in the next chapters.

All Logtalk built-in predicates check the type and instantiation mode of the calling
arguments, throwing an exception in case of misuse. All the exception terms thrown by
Logtalk built-in predicates have the following format:

error(Error, Call)

For example:

error(type_error(object_identifier, 33), current_object(33))

A complete and detailed description of all Logtalk built-in predicates, including excep-
tion terms and conditions, can be found on appendix B.

3.7 Representing object state and behavior

In most object-oriented languages such as Smalltalk, Java, or C++ there is a strong dis-
tinction between state and behavior, variables and methods, or data and functions. This
distinction does not exist in declarative languages such as Prolog and Logtalk, where
we can view a set of clauses as both data and procedures. Nevertheless, we can always
interpret an object predicate as representing either state or behavior. Very often, state
is represented by predicate facts and behavior by predicate rules, but this is not in any
way required by the Logtalk language. This section contains several examples that illus-
trate how to represent typical (and not so typical) concepts of common object-oriented
languages through Logtalk object predicates. The idea is to provide a bridge between
Logtalk and other object-oriented languages. However, I must emphasize that Logtalk
is a declarative language and, as such, the use of asserting and retracting methods to
implement object state should be minimized for the exact same reasons we should avoid
using the asserting and retracting predicates in Prolog programming. Logtalk should be
viewed as a declarative object-oriented language, adding code encapsulation and code
reuse features to Prolog. Trying to apply to Logtalk programming the same kind of
highly dynamic programming typical of other object-oriented languages, will result in
poor performance programs.

3.7. Representing object state and behavior 83

3.7.1 Instance methods

Any predicate declared in a class works as an instance method, for all descendant in-
stances. The predicate can be defined in the class, in the class subclasses, or in the
instances themselves. This last option is not available in most object-oriented languages
and will be described next.

Instance-defined methods

One of the advantages of prototypes over classes is the easy definition of objects with
singular behavior. This is also partially available in the implementation of class instances
in Logtalk. As for most class-based languages, methods must be declared in a class so
that an instance will understand a message. In Logtalk, however, a method definition
may be stored in an instance, thus overriding or specializing the class definition. The
key for this functionality lies in the implementation of the super mechanism (represented
by the ^^/1 control construct), which can be used in an instance-defined method to call
an inherited definition in the instance class or in one of the superclasses of the instance
class. In most object-oriented languages such as C++ or Java, an instance is little more
than a glorified dynamic data structure representing the state of an object. From this
point-of-view, instance-defined methods may seem a rather strange concept. However,
this concept fits naturally in Logtalk where there is no “a priori” distinction between
state and behavior, as both concepts are represented by predicates. Let me exemplify
this concept with two applications of instance-defined methods.

Overriding and specializing methods in instances

I will start with a very simple example where we redefine and specialize an inherited
method inside an instance. Assume that we have the following class:

:- object(my_class,
instantiates(metaclass), % metaclass
specializes(object)). % inheritance root

:- public(method/0).

method :-
this(This),
write(’Method default definition, stored in ’),
writeq(This), write(’.’), nl.

:- end_object.

We will now define three instances of my class. The first instance, instance1, simply
instantiates our class:

:- object(instance1,
instantiates(my_class)).

:- end_object.

84 Chapter 3. Predicates

The second instance, instance2, overrides the method definition inherited from the
class:

:- object(instance2,
instantiates(my_class)).

method :-
this(This),
write(’This is an overriding definition stored in ’),
writeq(This), write(’.’), nl.

:- end_object.

The third instance, instance3, specializes the method definition inherited from the
class:

:- object(instance3,
instantiates(my_class)).

method :-
this(This),
write(’Method specialized definition stored in ’),
writeq(This), write(’.’), nl,
write(’Calls inherited definition using super:’), nl,
^^method.

:- end_object.

To test our instance-defined methods, we will now send the message method/0 to each
instance. For the object instance1, the definition of the method method/0 is found in
its class:

| ?- instance1::method.
Method default definition, stored in my_class.
yes

The object instance2 overrides the inherited definition of the method method/0:

| ?- instance2::method.
This is an overriding definition stored in instance2.
yes

The object instance3 specializes the inherited definition of the method method/0:

| ?- instance3::method.
Method specialized definition stored in instance3.
Calls inherited definition using super:
Method default definition, stored in my_class.
yes

3.7. Representing object state and behavior 85

Avoiding metaclass proliferation

Instance-defined methods are especially useful to avoid proliferation of metaclasses,
whenever we just want to customize instantiation and initialization behavior for dif-
ferent classes. Assume, for example, that we want a class to keep a count of the number
of instances created:

:- object(class,
instantiates(metaclass)).

% initialize instance counter at class load time...
:- initialization(init_inst_counter).

% call generic new/1 definition and increment counter
new(Instance) :-

^^new(Instance),
inc_inst_counter.

init_inst_counter :-
...

inc_inst_counter :-
...

:- end_object.

This code assumes that the instance creation method new/1 is declared and defined in
the class metaclass, metaclass, or in a metaclass superclass. This method is specialized
in order to call a predicate that will increment the instance counter after successful
creation of a new instance.

3.7.2 Class methods

Some languages such as Objective-C, C++, and Java, share the concept of class methods.
In these languages, class methods are invoked in the class itself, not in the class instances,
and are used primarily for instance creation and destruction. This concept of class
methods is a consequence of the lack of support for metaclasses on those languages. In
other languages such as Smalltalk or Logtalk, which support metaclasses, class methods
are simply the methods of the class when interpreted as an instance and, as such, are
declared in its metaclass and in the metaclass superclasses.

To rewrite, in Logtalk, object-oriented code written in languages that do not support
metaclasses, we must simply define a metaclass to hold the class methods of the original
classes. Note that in Logtalk, unlike Smalltalk-80, a metaclass can be shared by several
instances: nothing forces the use a metaclass hierarchy parallel to the class hierarchy.

3.7.3 Instance variables

In common object-oriented languages, instance variable values are stored in the instances
and are accessed and modified by methods defined in the instance classes or superclasses.
In some languages, such as Smalltalk, instance variables are always private, while in other

86 Chapter 3. Predicates

languages such as C++ or Java they are usually declared private to enforce data hiding.
We can easily accomplish the same in Logtalk. Consider, for example, the following
class defining typical data about a person such as name and age:

:- object(person,
instantiates(metaclass), % metaclass
specializes(object)). % inheritance root

:- private(name_/1). % name instance variable
:- dynamic(name_/1).

:- public(name/1). % accessor method for name_/1
:- public(set_name/1). % setter method for name_/1

name(Name) :-
::name_(Name). % returns value defined for self

set_name(Name) :-
::retractall(name_(_)), % deletes value from self
::asserta(name_(Name)). % stores new value in self

% declarations and methods for the age_/1 variable
...

:- end_object.

The use of the message sending operator ::/1 in the definition of predicates name/1 and
set name/1 ensures that we always access and modify the definition of the predicate
name /1 of the instance which receives the corresponding messages.

Default values for instance variables

In Logtalk, to define a default value for an instance variable, we add the corresponding
predicate clause at the class (or subclass) level. For example, expanding the previous
example to include methods and declarations to represent a person’s age, we may write:

:- object(person,
instantiates(metaclass),
specializes(object)).

:- private(age_/1). % age instance variable
:- dynamic(age_/1).
...
age_(32). % default age value

age(Age) :-
::age_(Age). % returns value defined for self

...

:- end_object.

3.7. Representing object state and behavior 87

When the message age/1 is sent to an instance of the class person, the search for a
definition of the predicate age /1 will start at the instance. However, if there is no local
definition, the search will proceed to the instance class and then to the class superclasses
until the default definition will be found in the class person.

Shared instance variables

Shared instance variables are instance variables whose value is shared by all instances.
The variable value is stored at class level. In some languages such as Smalltalk-80,
shared instance variables are misleadingly named class variables.

Assume, for example, that we have a hierarchy of objects representing geometric
figures such as squares and triangles. The attribute “number of sides” can be considered
an instance attribute but it does not make sense to store it in every square instance.
Using a shared instance variable, the number of sides can be stored only once in the
class.

Shared instance variables are easily implemented in Logtalk. Any predicate declared
and defined in a class is shared by all instances unless we provide an overridden definition
in the instance itself. We just need to define any accessor or setter methods to work at
the class level, as in the following example:

:- object(my_class,
instantiates(metaclass), % metaclass
specializes(object)). % inheritance root

:- private(siv_/1). % shared instance variable
:- dynamic(siv_/1).

:- public(siv/1). % accessor method for siv_/1 var
:- public(set_siv/1). % setter method for siv_/1 var

siv_(0). % siv value is local to the class

siv(Value) :-
siv_(Value).

set_siv(Value) :-
retractall(siv_(_)),
asserta(siv_(Value)).

:- end_object.

Now assume that we have three instances of the above class, named i1, i2, and i3.
Access and modification of the shared instance variable can be performed from any
instance. We can start by getting the value of the shared variable for each instance:

| ?- i1::siv(V1), i2::siv(V2), i3::siv(V3).

V1 = 0
V2 = 0

88 Chapter 3. Predicates

V3 = 0
yes

We will now change the value of the shared variable via instance i1:

| ?- i1::set_siv(1).

yes

Getting the value of the shared variable for the other instances welds:

| ?- i2::siv(V2), i3::siv(V3).

V2 = 1
V3 = 1
yes

3.7.4 Class variables

Similar to class methods, class variables are the instance variables of a class seen as an
instance. Consequently, class variables are declared in the class metaclass and in the
metaclass superclasses.

3.7.5 Property sharing versus value sharing

Logtalk behavior of object predicates directly supports the concepts of property sharing
and value sharing, found in object-oriented prototype languages. With property sharing,
both property and its value are shared among descendant prototypes. This is similar to
the concept of shared instance variables in class-based languages. With value sharing,
the property is shared but its value is only shared by the descendant prototypes that do
not override it. We can, thus, have a property with a default value that can be shared
by some descendants while others may define specific values for it.

This section example, adapted from [59], illustrates how to perform both types of
sharing. In this example, we have a prototype named joePerson, containing general
data about a person, Joe, such as his age, name, and address. This prototype has
three descendants or viewpoints: joeSportsman, joeEmployee, and joeChessPlayer.
Each descendant contains data related to a particular viewpoint. We use the Logtalk
built-in database methods, such as asserta/1 and retract/1, in the context of this to
implement property sharing, and in the context of self to implement value sharing. We
can start with the definition of joePerson:

:- object(joePerson).

:- public(getOlder/0).

:- public(age/1).
:- dynamic(age/1).

:- public(name/1).

:- public(score/1).

3.7. Representing object state and behavior 89

:- dynamic(score/1).

:- public(setScore/1).

age(30).
name(’Joe Smith’).
score(0).

% use property sharing for the age/1 predicate:
getOlder :-

retract(age(Old)),
New is Old + 1,
asserta(age(New)).

% use value sharing for the score/1 predicate:
setScore(Score) :-

::retractall(score(_)),
::asserta(score(Score)).

:- end_object.

In this prototype, we used property sharing for the predicate age/1 as all viewpoints
refer to the same person. However, for the predicate score/1 we used value sharing
because this predicate will have a different interpretation, and thus a different value, for
each viewpoint.

The prototype joeSportsman represents our view of Joe as a sportsman:

:- object(joeSportsman,
extends(joePerson)).

:- public(sport/1).
:- public(stamina/1).
:- public(weight/1).

sport(snowboard).
stamina(30).
weight(111).

:- end_object.

Our view of Joe as an employee is represented by the prototype joeEmployee:

:- object(joeEmployee,
extends(joePerson)).

:- public(worksFor/1).

:- public(salary/1).
:- dynamic(salary/1).

90 Chapter 3. Predicates

:- public(giveRaise/1).

worksFor(’ToonTown’).
salary(1500).

% use property sharing for the giveRaise/1 predicate:
giveRaise(Raise) :-

retract(salary(Old)),
New is Old + Raise,
asserta(salary(New)).

:- end_object.

Joe is also a chess player:

:- object(joeChessPlayer,
extends(joePerson)).

:- public(category/1).

category(’National Master’).

:- end_object.

After compiling and loading the objects above, we can ask Joe his age:

| ?- joePerson::age(Age).

Age = 30
yes

The same question could be made through any of his viewpoints, resulting in the same
answer:

| ?- joeSportsman::age(Age).

Age = 30
yes

Now let us tell Joe to get older:

| ?- joePerson::getOlder.

yes

We can check the results of the above message from any of Joe’s viewpoints. For example:

| ?- joeChessPlayer::age(Age).

Age = 31
yes

3.7. Representing object state and behavior 91

Because the getOlder/0 updates the age/1 predicate using property sharing, we can
also send the getOlder/0 message to any of the Joe’s viewpoints, with the same results:

| ?- joeEmployee::getOlder.

yes

We can check this by asking Joe about its age again:

| ?- joePerson::age(Age).

Age = 32
yes

As you can see, although the update message has been sent to a descendant prototype,
it is the predicate age/1 in the parent prototype that was updated. To illustrate value
sharing, we will use the predicates score/1 and setScore/1 defined in joePerson. We
can start by retrieving the default value:

| ?- joePerson::score(Score).

Score = 0
yes

Initially, counter/1 is only defined for joePerson, so, every descendant prototype, or
viewpoint, will share its value or definition. For example:

| ?- joeEmployee::score(Score).

Score = 0
yes

However, we can set the score to some other value by sending the setScore/1 message
to a descendant. For example, the score for the national master chess category is 2200:

| ?- joeChessPlayer::(setScore(2200), score(Score)).

Score = 2200
yes

This viewpoint has now a local definition for score/1, that is independent of its parent
(joePerson) definition:

| ?- joePerson::score(Score).

Score = 0
yes

All the other descendant prototypes or viewpoints continue to share the definition in
the parent prototype joePerson:

| ?- joeSportsman::score(Score).

Score = 0
yes

92 Chapter 3. Predicates

3.8 Summary

Logtalk object predicates enable both a logical view and a classical object-oriented view
of an object. That is to say, we can view an object predicate as representing something
that is true about an object or as representing either object state or object behavior.

Data hiding is accomplished by declaring each predicate as public, protected, or pri-
vate. The message sending mechanism enforces the scope rules, preventing any access to
predicates outside the scope of the object sending the message. Logtalk also implements
public, protected, and private inheritance, allowing us to restrict the scope of inherited
predicates.

Object predicates can be used, together with the database built-in methods that
allow us to assert and retract predicate definitions, to easily implement not only common
concepts of object-oriented languages such as class and instance methods and variables,
shared instance variables, and property and value sharing, but also not so common
concepts such as instance-defined methods.

The support for dynamic object predicates allows us to modify, add, or remove state
and behavior from an object at runtime. We can thus update whole object hierarchies
by updating its root objects. All changes are immediately visible in descendant ob-
jects thanks to the use of dynamic binding in message processing and the independent
compilation of each object.

A set of built-in object methods provides access to the execution context of message
processing, complementing other features of the Logtalk language that allow the con-
struction of applications performing all sorts of reflective computations. Logtalk also
includes built-in object methods for database handling, reflection, and for finding all
solutions to a query. These methods, being based on the built-in predicates with the
same name defined in the ISO Prolog standards, enable a smooth transition from plain
Prolog programming to Logtalk programming. In fact, an object predicate database
implements most, if not all, of the functionality of Prolog’s flat predicate database.

Chapter 4

Protocols

This chapter begins by presenting the Logtalk concept of protocol, comparing it to the
concept of interface found on object-oriented languages and the ISO Prolog module
system. Secondly, it explains how to define protocols and protocol hierarchies. Next,
it describes the protocol directives and the built-in predicates for protocol handling.
Finally, it specifies the Logtalk built-in reflection predicates for working with protocols.

4.1 Logtalk protocol concept

Logtalk protocols encapsulate predicate declarations. Ideally, the declarations should
correspond to a functionally cohesive set of predicates. Protocols enable the separa-
tion between interface and implementation: a protocol can be implemented by several
objects, and an object can implement several protocols. Note that, although abstract
classes and multiple inheritance, both features supported by Logtalk, can provide some
of the functionality of protocols, this solution can only be applied to class-based hierar-
chies. In contrast, Logtalk protocols can be implemented by both classes and prototypes.

An object implements a protocol by providing definitions for the declared predicates.
However, the implementation of a protocol by an object should be interpreted in a loose
sense. An object is not required to provide a definition for every protocol declared
predicate. As discussed in Chapter 2, a message to an object is valid if the corresponding
predicate is declared for the object and in the scope of the sender. If no predicate
definition is found to answer the message, it simply fails. This semantics can be seen as
a Logtalk reinterpretation of the Prolog closed-world assumption.

4.1.1 Related work

Logtalk concept of protocol is inspired by the concept of interface found in the Java
object-oriented language. In addition, Logtalk protocols are designed to overcome the
limitations of the current ISO standard for the Prolog module system.

Interfaces in object-oriented languages

A noteworthy difference between Logtalk and other object-oriented languages has to do
with the rules for object implementation of a protocol. In languages such as Java, the
failure to implement a method declared in an interface results in a compilation error.

93

94 Chapter 4. Protocols

Java interfaces Logtalk protocols subsume the functionality provided by Java inter-
faces. An interesting difference is that a Java interface can only contain declarations
for public methods, while a Logtalk protocol may contain declarations for public, pro-
tected, and private predicates. The Java design reflects the notion of an object interface
as its set of public methods. However, an object also provides a second interface for its
(hierarchical) descendants. This interface includes both public and protected methods.
In Logtalk, both interfaces can be declared using protocols. Similar to Java, Logtalk
supports the definition of protocol hierarchies, which will be described later on this
chapter.

Module interfaces in the ISO Prolog standard

The ISO Prolog module system standard allows us to separate interface form implemen-
tation. Modules are composed by a single module interface and zero or more module
bodies. However, the identifier of a module interface must be the same of its module
bodies, precluding the building of modules that implement more than one interface. In
addition, it only allows a single implementation per interface. This rather limits the
usefulness of modules. Often, applications use multiple implementations of the same
interface. Modules implementing several interfaces are also common. These are fea-
tures of any modern object-oriented language supporting the definition of independent
interfaces, but their functionality is cumbersome to accomplish within this standard1.

Interfaces in Prolog object-oriented extensions

The O’CIAO [43] object-oriented extension to CIAO Prolog [44] supports the definition
of interfaces (as mentioned briefly in Chapter 1), based on the Java concept of interface.
Unlike Logtalk, an object implementing an interface must provide a definition for all
public predicates, otherwise an error will be thrown. In addition, O’CIAO only allow
the declaration of public predicates. A class may also be used as an interface. In this
case, all code in the class except the declarations of public predicates is ignored.

4.2 Working with protocols

This section describes the syntax for defining protocols and protocol hierarchies, the
Logtalk built-in predicates for protocol handling, and the available protocol directives.
The full specification of the directives and built-in predicates can be consulted on Ap-
pendix B.

4.2.1 Defining a new protocol

We can define a new protocol in the same way we can write Prolog code and define
Logtalk objects: by using a text editor. Protocol names must be atoms. Protocols
share a single namespace with objects and categories (presented in Chapter 5). As such,
we cannot have a protocol with the same name as an object. Protocol directives are
textually encapsulated by using two Logtalk directives: an opening directive, which can

1Partial workarounds are possible, at the expense of code clarity, by using predicate export, reexport,
and import directives. However, as module interfaces cannot contain import directives, we still cannot
define an interface as an extension of other interfaces.

4.2. Working with protocols 95

be either protocol/1 or protocol/2, and a closing directive, end protocol/0. The
simplest protocol will be one that is self-contained, not depending on any other Logtalk
entity:

:- protocol(Protocol).
...

:- end_protocol.

As an example, consider the following protocol, listp, containing declarations for com-
mon list processing predicates2:

:- protocol(listp).

:- info([
version is 1.0,
author is ’Paulo Moura’,
date is 2000/7/24,
comment is ’List processing protocol.’]).

:- public(append/3).
:- mode(append(?list, ?list, ?list), zero_or_more).
:- info(append/3, [

comment is ’Appends two lists.’,
argnames is [’List1’, ’List2’, ’List’]]).

:- public(member/2).
:- mode(member(?term, ?list), zero_or_more).
:- info(member/2, [

comment is ’Element is a list member.’,
argnames is [’Element’, ’List’]]).

...

:- end_protocol.

In most cases, protocols should be named after the functionality of their declared pred-
icates. For example, a set of declarations for debugging predicates would be encapsu-
lated in a protocol named debugging. Declarations for predicates handling monitors
and events would be contained in a monitoring protocol. This, of course, is not always
possible or desirable. In that case, it is common practice to append the character “p”
to the name of (one of) the object(s) that will implement the protocol, as in the above
example.

4.2.2 Protocol hierarchies

When a protocol extends one or more than one protocol, the opening directive will be:

:- protocol(Protocol,
extends(Protocols)).
...

:- end_protocol.

2The directives info/1 and info/2 used in this example are discussed in Chapter 7.

96 Chapter 4. Protocols

In this case, Protocol will inherit all the declarations contained in the extended proto-
cols. If Protocol declares a predicate that has already been declared in some extended
protocol, the local declaration will override the inherited one.

Protocol hierarchies are useful when we want to define both a basic protocol and
an extended version of the same protocol. Some objects may implement only the basic
protocol while other objects may implement the extended protocol. As an example,
which will be familiar to all Prolog programmers, assume that we define a basic protocol
for debugging our programs through tracing of a goal execution:

:- protocol(tracing).

:- public(trace/0).
:- public(notrace/0).

:- end_protocol.

An object may implement this protocol in order to provide the user with a very basic
debugger. However, for complex queries, tracing can be too verbose. Most of the time,
we are more interested in spying the execution of a few specific predicates. We can
then define a more sophisticated debugging protocol as an extension of the basic tracing
protocol:

:- protocol(debugging,
extends(tracing)).

:- public(debug/0).
:- public(nodebug/0).
:- public(debugging/0).
:- public(spy/1).
:- public(nospy/1).
:- public(nospyall/0).

:- end_protocol.

An object implementing this extended debugging protocol will also implement the basic
tracing protocol. From the object point-of-view, it is as the protocol hierarchy had been
flattened, with all predicate declarations collected in the implemented protocol declared
in the object-opening directive.

There is another scenario where protocol extension is handy. A well-designed pro-
tocol should be both minimal and complete. However, for performance and practical
reasons, we may want to extend a protocol with some convenient predicates that would
make programming easier. Assume, for example, that we have defined the following pro-
tocol, pointp, containing basic predicates for representing two-dimensional geometric
points using Cartesian coordinates:

:- protocol(pointp).

:- public(x/1, y/1).
:- public(set_x/1, set_y).

:- end_protocol.

4.2. Working with protocols 97

Common point operations such as converting between Cartesian and polar coordinates,
moving a point to a new location, or calculating the distance from a point to the origin,
can be implemented by calling the methods declared in the above protocol. However,
our code would be simpler if we define an extended protocol containing some convenient
methods for these common operations:

:- protocol(extdpointp,
extends(pointp)).

:- public(move/2).
:- public(ro/1, teta/1).
:- public(distance/1).
...

:- end_protocol.

Without support for protocol hierarchies, we would be forced either to define a single
protocol with all the above predicate declarations or to repeat some of the predicate
declarations across different protocol versions. The first option would result in objects
implementing predicates that might not be used. The second option would lead to code
duplication between minimal and extended versions of the protocol.

4.2.3 Creating a new protocol at runtime

We can create a new (dynamic) protocol at runtime by calling the Logtalk built-in
predicate create protocol/3:

| ?- create_protocol(Protocol, Relations, Directives).

The first argument is the name of the new protocol (a Prolog atom). It must be different
from other entity names. The second and third arguments correspond to the relations
described in the opening protocol directive and to the protocol directives, respectively.
For example, the following call:

| ?- create_protocol(ppp, [extends(qqq)], [public(foo/1)]).

is equivalent to compiling and loading the protocol:

:- protocol(ppp,
extends(qqq)).

:- dynamic.

:- public(foo/1).

:- end_protocol.

If we need to create many (dynamic) protocols at runtime, then it would be better to
define an object containing a predicate that will call this built-in predicate in order to
provide more sophisticated behavior.

98 Chapter 4. Protocols

4.2.4 Abolishing dynamic protocols

Dynamic protocols can be abolished at runtime by calling the Logtalk built-in predicate
abolish protocol/1:

| ?- abolish_protocol(Protocol).

The argument must be an identifier of an existent dynamic protocol, otherwise an error
will be thrown.

4.2.5 Protocol directives

Protocol directives are used to set initialization goals, define protocol properties, and
document protocols.

Protocol initialization

We can define a goal to be executed as soon as a protocol is (compiled and) loaded in
memory with the initialization/1 directive:

:- initialization(Goal).

The argument can be any valid Prolog or Logtalk goal, including a message sending call.

Dynamic protocols

As it usually happens with Prolog code, a protocol can either be static or dynamic.
A protocol created during the execution of a program is always dynamic. A protocol
defined in a file can either be dynamic or static. Dynamic protocols are declared by
using the dynamic/0 directive in the protocol source code:

:- dynamic.

Note that, as in most Prolog compilers, the performance of dynamic code is lower than
the performance of static code. We should only use dynamic protocols whenever they
will need to be abolished during program execution.

Protocol documentation

Similar to objects, a protocol can be documented with arbitrary user-defined information
by using the info/1 directive:

:- info(List).

This directive will be fully discussed in Chapter 7.

4.2.6 Implementing protocols

An object can implement any number of protocols. The syntax is very simple:

:- object(Object,
implements(Protocol1, Protocol2, ...), ...).
...

:- end_object.

4.2. Working with protocols 99

The result is the same as if all protocol predicate declarations (that is, the predicate
scope directives) were contained in the object itself. Therefore, when searching for a
predicate declaration, implemented protocols (and the protocols that they may extend)
are always searched before extended, instantiated, or specialized objects. In the case of
the object and one of its implemented protocols declaring the same predicate, the local
declaration will override the inherited one. In the event of two protocols declaring the
same predicate, the declaration in the first protocol (following the order of the protocols
in the implements clause) will override the declaration in the second protocol.

As an example, the following object implements the protocol listp presented earlier
in this chapter:

:- object(list,
implements(listp)).

append([], List, List).
append([Head| Tail], List, [Head| Tail2]) :-

append(Tail, List, Tail2).

member(Element, [Element| _]).
member(Element, [_| List]) :-

member(Element, List).

...

:- end_object.

Recall that, unlike the ISO Prolog modules, object and protocols must have distinct
names since they share the same namespace.

We can also define alternative implementations of the protocol listp using, for
example, difference lists:

:- object(difflist,
implements(listp)).

append(List1-Back1, Back1-Back2, List1-Back2).
...

:- end_object.

Public, protected, and private protocol implementation

Public, protected, and private protocol implementation is performed by prefixing, in the
object-opening directive, the protocol name with the corresponding scope keyword.

To make all public predicates, declared via an implemented protocol, become pro-
tected, we write:

:- object(Object,
implements(private::Protocol)).
...

:- end_object.

100 Chapter 4. Protocols

To make all public and protected predicates declared via an implemented protocol be-
come private, we write:

:- object(Object,
implements(protected::Protocol)).
...

:- end_object.

Omitting the scope keyword is equivalent to writing:

:- object(Object,
implements(public::Protocol)).
...

:- end_object.

Hence, by default, the scope of an implementation relation is public.

4.3 Finding about protocols

Logtalk provides a set of built-in predicates that allows us to perform reflective compu-
tations about protocols protocol relations in our programs.

4.3.1 Finding defined protocols

We can enumerate, using backtracking, all defined protocols by calling the built-in pred-
icate current protocol/1 with a non-instantiated variable:

| ?- current_protocol(Protocol).

This predicate can also be used to check whether a protocol is defined by calling it with
a valid protocol identifier (an atom).

4.3.2 Protocol relations

Logtalk provides two sets of built-in predicates for querying the system about the pos-
sible relations between a protocol and other entities.

Protocol extension relations

The built-in predicate extends protocol/2 returns all pairs of protocols in which the
first protocol extends the second one:

| ?- extends_protocol(Protocol1, Protocol2).

In case we also want to know the extension scope, we can use the built-in predicate
extends protocol/3, instead:

| ?- extends_protocol(Protocol1, Protocol2, Scope).

4.4. Summary 101

Protocol implementation relations

To find which objects or categories implement which protocols we can call the built-in
predicate implements protocol/2:

| ?- implements_protocol(ObjectOrCategory, Protocol).

To also find the scope of the implementation relation we can use the built-in predicate
implements protocol/3, instead:

| ?- implements_protocol(ObjectOrCategory, Protocol, Scope).

Note that, if we use an uninstantiated variable for the first argument, we will need to
use the current object/1 or current category/1 built-in predicates to identify the
type of the returned entity.

4.3.3 Protocol properties

A protocol may have the static, dynamic, or built in property. We can find the
properties of defined protocols by calling the built-in predicate protocol property/2:

| ?- protocol_property(Protocol, Property).

Dynamic protocols can be abolished at runtime by calling the abolish protocol/1
built-in predicate.

4.4 Summary

Traditionally, Prolog uses a single database for storing all predicates. Prolog modules
change this through the implementation of namespaces, allowing us to split our database
in more manageable parts. One problem with Prolog modules is that, although they
support the concepts of module interface and module implementation, they fail to allow
independent definition and use of interfaces and implementations, as found on modern
object-oriented languages. Specifically, a module interface cannot be implemented by
more than one module and a module cannot implement more than one interface. Logtalk
protocols solve this problem by allowing several objects to implement a single protocol
and an object to implement multiple protocols.

Logtalk supports the definition of protocol hierarchies. We can thus define a range
of protocols from basic to sophisticate, covering from minimal to extended needs, with-
out duplication of predicate declarations. In addition, Logtalk protocols may contain
declarations for protected and private predicates, along with declarations for public
predicates, allowing the definition of any kind of object interface.

Chapter 5

Categories

This chapter presents the Logtalk concept of category, a new composition mechanism
which complements code reuse by inheritance and by object variable-based composition,
especially in the context of single-inheritance languages. Firstly, it discusses the issues of
code reuse in object-oriented languages. Secondly, it describes the concept of category,
along with its roots and its implementation in Logtalk, followed by a comparison with
related work. Next, it presents several examples. Finally, it summarizes some cases
where categories are a useful tool and discusses some possible extensions of the category
concept.

5.1 Code reusing

Sometimes we want to define and reuse a set of predicates that, even if functionally
cohesive, do not fit in the notion of an object and only make sense when composed
with other code in order to construct new objects. Take, for example, the Smalltalk [19]
dependency mechanism that enables an object to notify a set of dependent objects of the
occurrence of some relevant event. We may need this mechanism for some of our objects
but certainly not for all. In Smalltalk, this is an all-or-nothing proposition. For example,
in VisualWorks [75, 76] the code is contained in a parcel and is an optional feature that
one can load/add to the base system. The dependent methods (and associated data
structures) are always added to the root class, Object, making them available for all
objects. We either have dependent support for all objects or for none. In other systems
where the dependency code is included by default, it is also stored in the root class
Object. There are two issues here: how do we encapsulate and how do we reuse such a
set of methods? We seek a solution that enables us to add the methods that we want
to reuse to the interface of only those objects that will use them, and at the same level
as the object locally defined methods. In hybrid languages like C++ [8], we can always
write generic code, such as utility functions, without encapsulating them inside objects.
However, in pure object-oriented languages like Smalltalk or Java [9], all the code that
we write must be encapsulated in some object. Sharing a method among unrelated
objects will, then, require the use of either inheritance or composition mechanisms.

5.1.1 Inheritance-based reusing

While using inheritance, shared methods must be stored in a common ancestor. If
the chosen language supports multi-inheritance, we can encapsulate our methods in

103

104 Chapter 5. Categories

a parent class for all the objects that need to inherit such methods. Implementation
multi-inheritance usually causes no problem for independent sets of cohesive methods
and variables. However, languages like Smalltalk only support single-inheritance, while
others such as Objective-C [21, 77] or Java only support the multi-inheritance of pro-
tocols. Without stepping into the single- versus multi-inheritance controversy [56], we
need a solution that can be adopted by single-inheritance languages like Smalltalk or
Java.

With single-inheritance, shared methods must be added to some common ancestor
object. The outcome will often be root objects with large collections of methods and
complex interfaces, despite the fact that most descendant objects never use most of the
methods [22]. For example, the root class of VisualWorks 3.0 has 94 methods in 25
categories while Squeak 2.5 [78, 79], another Smalltalk system, has 96 methods in nine
categories. The numbers for Java and Objective-C are better. In Java 1.2 [80] we have
12 methods in class Object versus 35 methods in class Class. In Apple’s Objective-
C frameworks [81] we have 38 instance and class methods in the root class NSObject.
Single-inheritance may also force hierarchy relations that do not reflect the application
domain but truly are workarounds for language limitations [82], although the problem
can be mitigated by multi-inheritance of interfaces or protocols.

5.1.2 Object variable-based composition reusing

Common object-oriented languages like Smalltalk, Objective-C, Java, or C++, lack
native support for composition at the same level as inheritance. The most common
solution for implementing composition is to use an instance variable to hold a reference to
an instance of the class that contains the methods we need to reuse. This implies a level
of indirection whenever we want to add the composed object methods to the container
interface, with the consequent need of cumbersome glue code and some performance
penalties. In addition, updating the composed object will not automatically update the
container object interface. Note that these drawbacks of what we call object variable-
based composition result from our need of a different kind of composition solution, not
from any inherent problem of this reusing method.

5.1.3 Category-based reusing

As an object-oriented language, Logtalk supports code reusing by inheritance and by
object variable-based composition. However, Logtalk also provides an alternative form
of code reuse through the concept of category, which will be presented next.

5.2 Logtalk category concept

The starting point for the Logtalk category concept comes from the Smalltalk-80 lan-
guage where methods can be partitioned into named functional categories. However,
Smalltalk-80 categories only have one documentation meaning. They are used to orga-
nize source code, and implemented by the language class browser. Logtalk extends this
concept by turning a category into an encapsulation unit, at the same level as objects
or protocols. The main idea is that we can compose a set of categories in order to de-
fine new objects, enabling code reuse without using inheritance or object-variable based
composition. Conversely, any object may be split in a set of categories. The splitting

5.2. Logtalk category concept 105

is straightforward and the code only requires elementary changes if predicates in one
category need to call predicates in other category (because we are no longer calling code
in the same encapsulation unit). The main purpose of categories is the encapsulation of
functional sets of predicates, serving as object building blocks.

5.2.1 Category properties

Categories are fully implemented in the current Logtalk implementation, providing the
following properties:

1. Categories have the same encapsulation power as objects: a category may contain
both predicate directives and definitions. A category may also implement one or
more protocols.

2. Category predicates are reused by importing the category into an object. The
predicates are virtually added to the object protocol, along with any local object
predicates, without any code duplication.

3. Categories provide runtime transparency: predicates added via a category are in-
herited by all the descendants of the importing object and can be called, redefined,
or specialized like any other object predicate. One important consequence of this
property is that an object can be factored in categories without breaking its clients
or its descendants.

4. An object may import one or more categories. Any number of objects can import
a category. A category is always shared between all importing objects with no
duplication of code.

5. A category may declare and use dynamic predicates. In this case, each importing
object will have its own set of clauses for each dynamic predicate. This enables a
category to define and manage (object) state.

6. An object can restrict the scope of imported category predicates by prefixing the
category name with one of the keywords public, protected, or private, in a similar
way to public, protected, and private inheritance. By default, importation is public
if the scope keyword is omitted.

7. Categories are compilation units; i.e., they are independently compiled from im-
porting objects or implemented protocols, enabling incremental compilation.

8. There are no inheritance or importation mechanisms for categories. They cannot
inherit from, or be inherited by, other categories or objects. They also cannot
import, or be imported by, other categories. Thus it is both meaningless and an
error to send a message to a category.

9. Categories enable an object to be virtually assembled only when created or loaded
to memory. By importing one or more categories, an object will have a distributed
dictionary of predicates composed of its own dictionary and of the dictionaries of
each imported category. An object may then be updated simply by updating an
imported category, without any need to recompile it or to access its source code.

106 Chapter 5. Categories

10. Both classes and prototypes can import a category at the same time; its imple-
mentation is independent of the implementation of either type of objects. The
use of categories is orthogonal to the choice of the most appropriate object con-
cept, enabling the development of category libraries that can be reused in both
prototype and class based designs.

11. Categories can be dynamically created and abolished at runtime (just like objects
or protocols). However, note that runtime creation of new categories does not im-
ply any kind of instantiation process: categories are not objects. Instead, Logtalk
uses the same self-modifying code features found in Prolog.

Categories can be seen as a dual concept of Logtalk protocols: protocols provide interface
reuse, while categories enable implementation reuse without using inheritance. Both
protocols and categories are intended to encapsulate cohesive data. Both are used
as building blocks in the definition of new, possibly unrelated, objects, allowing finer
grain reuse. In addition, similar to a protocol, a category can be imported by several
objects while an object can import several categories. However, where as protocols
can extend other protocols, a category cannot be constructed as a composition of other
categories. This can be seen as a limitation that constrains categories to be used as
an enhanced virtual import mechanism, instead of a full blow separation of concerns
or composition mechanism [83]. Nevertheless, despite its simplicity, categories enjoy
several useful properties. But also because of its simplicity, categories are very easy to
implement using current object compiling technology.

Conflicts may arise if two imported categories define the same predicate. This is akin
to multi-inheritance conflicts but much simpler to spot and solve because categories do
not inherit from other categories or objects. In addition, a category is mainly used
to encapsulate a set of functionally cohesive predicates, thus minimizing the chances
of name conflicts. The current Logtalk version uses a simple depth-first lookup when
searching for a predicate, implicitly solving any possible name clashes. If an object
inherits a predicate that is also defined in an imported category, the category definition
takes precedence over the inherited definition (this is similar to overriding a method
in a subclass). If a category defines the same predicate as an object into which it is
imported, the object predicate overrides the predicate definition defined in the category.

5.2.2 Implementation

The current Logtalk version contains a full implementation of all the properties of the
category concept, as described in this chapter. The system also includes several examples
of the use of categories, some of them presented here in the next session. It should be
noted that the Prolog/Logtalk features of interpreting code as both data and executable
procedures, combined with easy conversion between data and code, make it arguably
easier to implement features like categories when compared to languages like C++,
Smalltalk, or Java. The Logtalk compiler and runtime source files can be downloaded
from the Logtalk web site for close examination of the implementation details.

Objects that import categories and/or implement protocols have a distributed dic-
tionary of predicates. That is to say that, in addition to a list of local predicates,
objects have links to the dictionaries of imported categories and implemented protocols.
These links, defined at compilation time, are always searched for before inheritance links.
Categories (and protocols) are compiled such as the encapsulated code can be shared

5.3. Related work 107

and used by several objects (either prototypes or instances/classes) at the same time.
This is accomplished in two steps. First, category predicates are compiled like object
predicates, with extended arguments for the execution context information. This ex-
tended arguments include self (the object that received the original message), this (the
object importing the category, that virtually contains the predicate under execution),
and sender (the object that has sent the original message). Secondly, at runtime, the
object–category dictionary links propagate the current execution context to the cate-
gory predicates, enabling them to be used like they have been defined in the importing
object. That is, when executing a definition contained in a category, the values of self,
this, and sender are the same as if the definition was contained in the object importing
the category. In the case of dynamic predicates (predicates whose definition can be
modified at runtime), the implementation of the predefined methods that allow us to
add, change, and delete definitions ensure that each importing object will have its own
set of definitions.

Another important aspect is the performance cost of adding categories to an object-
oriented language. If all imported categories only contain predicate directives, then
performance should be similar to languages like Objective-C or Java that implement
multi-inheritance of protocols. In the most common situation, where a category con-
tains both predicate directives and definitions, searching for a predicate may require
looking inside an imported category. This will have a small performance penalty that is
proportional to the number of imported categories, and results from the need to access
several encapsulation units.

As categories can provide alternative solutions to the use of multi-inheritance (see
the points example in the next section), we should also compare the costs of these two
reusing methods. While an inheritance link may lead to several other inheritance links,
following an imported category link implies only one level of indirection when searching
an importing object predicate dictionary: a category does not inherit or import code
from other objects or categories. This ensures that a design using single-inheritance
and categories has a more predictable and better method-lookup performance than an
equivalent multi-inheritance solution.

5.3 Related work

In this section, some related work on other programming languages is discussed and
compared with the Logtalk concept of category.

5.3.1 Mixins

The Flavors [84] system, an object-oriented extension to LISP [85], introduced the con-
cept of mixin [86], a coding convention that uses abstract subclasses to specialize behav-
ior in parent classes. Mixins are combined, using multi-inheritance, with other mixins to
build regular classes. Mixins, like Logtalk categories, often encapsulate a set of function-
ally cohesive methods and attributes. However, categories are reused by composition
while mixins are reused through multi-inheritance. In a language that supports multi-
inheritance, mixins enable flexible reusing without the need of introducing a new kind of
entity. Another important difference is that, while mixins rely on specialization of parent
methods (using the call-next-method primitive), categories do not need to depend on
importing objects. Categories are often used to encapsulate independent, self-contained

108 Chapter 5. Categories

code, resulting in more flexible and powerful reusing mechanism. We can only use a
mixin if the class that inherits the mixin also inherits a parent that defines the method
specialized by the mixin. No such constraints exist in reusing Logtalk categories.

5.3.2 Smalltalk categories

Regarding Smalltalk, most implementations define interface primitives for loading and
saving fragments of code. These primitives, historically named FileIn and FileOut,
enable the programmer to add or remove fragments of code, methods and variables, from
a class. These fragments of code often correspond to a category or a set of categories,
thus giving a useful operational meaning to an otherwise documentation only concept.
However, a Smalltalk category is always associated with a specific class and cannot
be shared by two or more classes. Logtalk removes this restriction, generalizing the
category concept to enable a category to be imported into any object.

5.3.3 Objective-C categories

The Objective-C language also implements a category concept, but as a way to extend
an existing class with new methods, even when the extended class source code is not
available. It can be seen as an alternative to a sub-class. However , one cannot extend a
class other than the one specified in the category declaration. This differs from Logtalk,
where categories are independent of objects, and any category can be imported by any
object. While Objective-C categories are designed to extend existing code, Logtalk cat-
egories are object building blocks. Although two different concepts, aiming at different
goals, they share some important properties such as run-time transparency, encapsula-
tion of related methods, incremental compilation, and easier maintenance of complex
objects.

5.3.4 Ruby modules

Ruby [87, 88, 89] is an object-oriented scripting language that supports a concept of
mix-in modules similar to Logtalk categories. The programmers reference guide [90]
defines modules as:

“Ruby intentionally does not have the multiple inheritance as it is a source of confu-
sion. Instead, Ruby has the ability to share implementations across the inheritance
tree. This is often called ‘Mix-in’.”

Ruby modules are collections of methods and constants that can be imported by any
class. Modules cannot be instantiated or subclassed but can receive messages. This
means that we can use module resources without first importing them into a class. It
also means that we must be careful in not calling methods that only make sense when
doing mix-in programming.

5.3.5 Prototype languages

The representation of shared code (similar to what we can do with classes) has always
been a problem in prototype-based languages. The Self [60, 91] prototype programming
language defines a concept of trait prototypes that are used to store common behav-
ior, playing a role similar to the role played by classes in class-based languages. One

5.4. Working with categories 109

drawback of traits is the fact that, in spite of being objects, they cannot answer most
messages because the corresponding methods need access to slots only available in de-
scendant prototypes [29]. Logtalk categories can play the role of traits as a way to store
shared methods with the advantage that is not possible to send a message to a category.

As described in the previous section, Logtalk categories are an evolution of the
Smalltalk-80 functional category concept, taking what is essentially a browser doc-
umentation feature and transforming it into a code reuse language mechanism. As
such, it compares favorably to other reuse mechanisms at the same level as mixins,
multi-inheritance, or object variable-based composition. However, it does not intend to
compete with higher-level solutions for code reuse through composition such as aspect-
oriented programming [92], subject-oriented programming [93], or binary component
adaptation [94] among others.

5.4 Working with categories

This section describes the syntax for defining categories, the Logtalk built-in predicates
for category handling, and the available category directives. The full specification of the
directives and built-in predicates can be consulted on Appendix B.

5.4.1 Defining a new category

We can define a new category in the same way as we define objects and protocols and
write Prolog code: by using a text editor. Category names must be atoms. Objects,
categories, and protocols share a single name space. Thus, we cannot have a category
with the same name as an object or a protocol. Category code (directives and pred-
icates) is textually encapsulated between two Logtalk directives: category/1-2 and
end category/0.

The simplest category will be one that is self-contained, not depending on any other
Logtalk entity:

:- category(Category).

...

:- end_category.

When a category implements one or more protocols then the opening directive would
be:

:- category(Category,
implements(Protocol1, Protocol2, ...)).

...

:- end_category.

Note that a category cannot import other categories or inherit code from an object.
Nevertheless, in the same way as objects, categories support public, protected, and
private protocol implementation.

110 Chapter 5. Categories

5.4.2 Creating a new category at runtime

A category can be dynamically created at runtime by using the built-in predicate
create category/4:

| ?- create_category(Category, Relations, Directives, Clauses).

The first argument, the name of the new category (a Prolog atom) should not match
with an existing entity name. The remaining three arguments correspond, respectively,
to the relations described in the opening category directive, to the category directives,
and to the category clauses. For example, the following call:

| ?- create_category(ccc,
[implements(ppp)],
[private(bar/1)],
[(foo(X):-bar(X)), bar(1), bar(2)]).

is equivalent to compiling and loading the category:

:- category(ccc,
implements(ppp)).

:- dynamic.

:- private(bar/1).

foo(X) :-
bar(X).

bar(1).
bar(2).

:- end_category.

If we need to create a lot of (dynamic) categories at runtime, then it would be better to
define a metaclass or a prototype with a predicate that will call this built-in predicate
in order to provide more sophisticated behavior.

5.4.3 Abolishing dynamic categories

Dynamic categories can be abolished using the abolish category/1 built-in predicate:

| ?- abolish_category(Category).

The argument must be an identifier of an existent dynamic category, otherwise, an error
will be thrown.

5.4.4 Category directives

Category directives are used to set initialization goals, to define category properties, and
for documenting categories.

5.4. Working with categories 111

Category initialization

We can define a goal to be executed as soon as a category is (compiled and) loaded in
memory with the initialization/1 directive:

:- initialization(Goal).

The argument can be any valid Prolog or Logtalk goal, including a message sending call.

Dynamic categories

As it usually happens with Prolog code, a category can be either static or dynamic.
A category created during the execution of a program is always dynamic. A category
defined in a file can be either dynamic or static. Dynamic categories are declared by
using the dynamic/0 directive in the category source code:

:- dynamic.

Note that, as in most Prolog compilers, the performance of dynamic code is lower than
the performance of static code. We should only use dynamic categories whenever they
will need to be abolished during program execution.

Category dependencies

In addiction to the relations declared in the category-opening directive, the predicate
definitions contained in the category may imply other dependencies. This can be docu-
mented by using the calls/1 and the uses/1 directives.

The calls/1 directive can be used when a predicate definition sends a message that
is declared in a specific protocol:

:- calls(Protocol).

If a predicate definition sends a message to a specific object, this dependence can be
declared with the uses/1 directive:

:- uses(Object).

These two directives can be used by the Logtalk runtime to ensure that all needed
entities are loaded when running an application.

Category documentation

Similar to objects and protocols, a category can be documented with arbitrary user-
defined information by using the info/1 directive:

:- info(List).

This directive will be fully discussed in Chapter 7.

112 Chapter 5. Categories

5.4.5 Importing categories

Any number of objects can import a category. In addition, an object can import any
number of categories. The syntax is very simple:

:- object(Object,
imports(Category1, Category2, ...), ...).
...

:- end_object.

The result is the same as if all category predicate declarations and definitions are con-
tained in the object itself. When searching for a predicate declaration or definition,
imported categories (and the protocols that they may implement) are always searched
after implemented protocols, and before extended, instantiated, or specialized objects.
In the case that the object declares (or defines) a predicate already declared (or defined)
in a imported category, the local declaration will override the inherited one. In the
event of two categories declaring (defining) the same predicate, the declaration (defini-
tion) on the first category (following the order of the categories in the imports clause)
will override the declaration (definition) on the second category.

Public, protected, and private category importation

Public, protected, and private category importation is performed by prefixing, in the
object-opening directive, the category name with the corresponding scope keyword.

To make all public predicates declared via an imported category become protected,
we write:

:- object(Object,
imports(protected::Category)).
...

:- end_object.

To make all public and protected predicates declared via an imported category become
private, we write:

:- object(Object,
imports(private::Category)).
...

:- end_object.

Omitting the scope keyword is equivalent to writing:

:- object(Object,
imports(public::Category)).
...

:- end_object.

Hence, by default, the scope of an importation relation is public.

5.5. Finding about categories 113

5.4.6 Handling dynamic predicates

Categories cannot contain clauses for dynamic predicates. The major reason for this
limitation is that a category can be imported by several different objects. While cat-
egory static predicates can be shared among any number of objects without problems,
sharing dynamic predicates would raise two problems. First, we cannot send messages to
categories. Therefore, we cannot use built-in methods such as assertz/1 or clause/2
on clauses of dynamic predicates defined inside the category. These built-in methods
always act on the database of the object that receives the corresponding message. Sec-
ond, even if we could send messages to categories, it would not be possible to ensure
that all updates of a dynamic predicate definition would be compatible with all the
objects importing the category. However, there are no restrictions in declaring dynamic
predicates or in defining predicates that handle dynamic predicates. For example, if we
want to define a category containing predicates implementing variables using destructive
assignment, we could write:

:- category(variable).

:- public(get/2, set/2).

:- private(value_/2).
:- dynamic(value_/2).

get(Var, Value) :-
::value_(Var, Value).

set(Var, Value) :-
::retractall(value_(Var, _)),
::asserta(value_(Var, Value).

:- end_category.

Note that the dynamic predicate is called by the predicate get/2 using the ::/1 message
sending control construct. This will ensure that the correct predicate definition for each
object importing the category will be used. In the same way, the predicate and set/2
always update the correct definition, contained in the object receiving the corresponding
messages retractall/1 and asserta/1. This way, each object importing the category
will have its own definition for the value /2 private predicate.

5.5 Finding about categories

Logtalk provides a set of built-in predicates that allows us to perform reflective compu-
tations about categories and category relations in our programs.

5.5.1 Finding defined categories

We can enumerate, using backtracking, all defined categories by calling the Logtalk
built-in predicate current category/1 with a non-instantiated variable:

| ?- current_category(Category).

114 Chapter 5. Categories

This predicate can also be used to test if a category is defined by calling it with a valid
category identifier (that is, an atom).

5.5.2 Category relations

Logtalk provides two sets of built-in predicates for querying the system about the pos-
sible relations between a category and other entities.

Implementation relations

To find out which categories implement which protocols we can use the built-in predi-
cates implements protocol/2 and implements protocol/3:

| ?- implements_protocol(Category, Protocol).

or, if we want to know the implementation scope:

| ?- implements_protocol(Category, Protocol, Scope).

Note that, if we use a non-instantiated variable for the first argument, we will need to
use the current category/1 built-in predicate to ensure that the returned entity is a
category and not an object.

Importation relations

To find out which objects import which categories we can use the built-in predicate
imports category/2:

| ?- imports_category(Object, Category).

or, if we want to know the importation scope, we can use instead the built-in predicate
imports category/3:

| ?- imports_category(Object, Category, Scope).

Note that several objects can import one category.

5.5.3 Category properties

A category may have the static, dynamic, or built in property. We can find the
properties of defined categories by calling the built-in predicate category property/2:

| ?- category_property(Category, Property).

Dynamic categories can be abolished in runtime by calling the abolish category/1
built-in predicate.

5.6 Examples

The following examples show how categories may be used for component-based pro-
gramming, compare object variable-based with category-based composition, and illus-
trate how categories can be used for sharing code between selected objects, providing
alternative solutions to multi-inheritance. Although there are no predefined categories
in Logtalk, several examples can be found in the current Logtalk distribution, both in
the standard library and in the tutorial examples.

5.6. Examples 115

5.6.1 Composing definite clause grammars

Definite clause grammar rules can be contained in categories, like regular predicates.
This allows complex grammars to be modularized by splitting them in categories that
can be combined and reused as necessary.

This example illustrates how to construct a simple grammar for parsing natural
language sentences from a set of categories, each one containing a set of definite clause
rules. The first category encapsulates definite clauses for determiners:

:- category(determiners).

determiner --> [the].
determiner --> [a].

:- end_category.

The second category contains rules for common nouns:

:- category(nouns).

noun --> [boy].
noun --> [girl].

:- end_category.

The third category contains rules for common verbs:

:- category(verbs).

verb --> [likes].
verb --> [hates].

:- end_category.

We can now compose these three categories by importing them into an object, which
adds the necessary rules to define sentences through the combination of determiners,
nouns, and verbs:

:- object(sentence,
imports(determiners, nouns, verbs)).

:- public(parse/2).

parse(List, true) :-
phrase(sentence, List).

parse(_, false).

sentence --> noun_phrase, verb_phrase.

noun_phrase --> ::determiner, ::noun.

116 Chapter 5. Categories

noun_phrase --> ::noun.

verb_phrase --> ::verb.
verb_phrase --> ::verb, noun_phrase.

:- end_object.

Note that the calls to the non-terminals determiner, noun, and verb are prefixed by
the message sending operator ::/1 in order to call the grammar rules in the imported
categories.

Compiling and loading the above object and categories enables queries such as the
following ones:

| ?- sentence::parse([the, girl, likes, the, boy], Result).

Result = true
yes

| ?- sentence::parse([the, girl, scares, the, boy], Result).

Result = false
yes

The implementation of the built-in method phrase/3 allows sentences to be both parsed
and generated, depending naturally on the grammar rules that we define. For this
example, this makes it possible to use queries such as follows:

?- sentence::parse(Sentence, true).

Sentence = [the, boy, likes] ;
Sentence = [the, boy, hates] ;
Sentence = [the, boy, likes, the, boy] ;
Sentence = [the, boy, likes, the, girl] ;
...

in order to generate all possible sentences recognized by the grammar.

5.6.2 Splitting an object in categories

Two of the most basic benefits of categories are code documentation and code organi-
zation. Most Smalltalk implementations already classify methods in several functional
categories. In these cases, splitting a class using the Logtalk category concept is a trivial
job (when a method in one category needs to call a method in another category, some
elementary code changes will be needed). Let us turn our attention to Java instead.
Take, for example, the class Float, contained in the java.lang package [80]. This class
declares twenty-three new methods that can be easily classified in five categories named
constructors, comparing, testing, converting, and hashing as follows:

constructors
Float(double value)
Float(float value)

5.6. Examples 117

Float(String s)

comparing
compareTo(Object o), compareTo(Float anotherFloat)
equals(Object obj)

testing
isNaN(), isNaN(float v)
isInfinite(), isInfinite(float v)

converting
toString(), toString(float f)
parseFloat(String s), valueOf(String s)
floatToIntBits(float value), intBitsToFloat(int bits)
floatValue(), doubleValue()
shortValue(), intValue(), longValue()
byteValue()

hashing
hashCode()

This helps the programmers in locating a method to perform a specific type of service
while browsing a class, and results from the simple fact of classifying the methods
in appropriate functional categories. The documentation of the Java classes present
methods in alphabetical order, handy only if we are looking for the details of a known
method. It should be noted however that, just as a class hierarchy implicitly reflects a
specific classification point-of-view over a set of objects, there is usually more than one
way to split a set of methods into functional categories.

5.6.3 Categories as a complementary composition tool

The category concept here presented provides a composition mechanism different from
what we may call object variable-based composition. Usually, composition is accom-
plished by storing references to other objects in object variables. Comparing the two
mechanisms shows they are complementary and addressing different needs, rather than
competing ways of doing composition. Object variable-based composition is mainly used
to implement part-of hierarchies. The implied level of indirection is often used in our
advantage to control which methods (if any) are made available to the clients of the
container object. By contrast, the methods imported from a category are transpar-
ently used and are conceptually at the same level of any object-defined method. Object
variable-based composition also implies the creation of new objects every time a con-
tainer object is instantiated and, therefore, a policy to control the process. It is however
free from name clashes that may affect multi-inheritance or category-based composition
solutions.

Let us start by defining a category that implements a set of predicates for handling a
dictionary of attributes. We will need public predicates to set, get, and delete attributes,
and a private dynamic predicate to store the dictionary entries. Let us name these
predicates set attribute/2 and get attribute/2, for getting and setting an attribute

118 Chapter 5. Categories

value, del attribute/2 for deleting attributes, and attr /2, for storing the attribute–
value pairs:

:- category(attributes).

:- public(set_attribute/2). % set a pair attr-value
:- public(get_attribute/2). % test/get a pair attr-value
:- public(del_attribute/2). % delete a pair attr-value

:- private(attr_/2). % attributes storage
:- dynamic(attr_/2).

set_attribute(Attr, Value):-
::retractall(attr_(Attr, _)),
::assertz(attr_(Attr, Value)).

get_attribute(Attr, Value):-
::attr_(Attr, Value).

del_attribute(Attr, Value):-
::retract(attr_(Attr, Value)).

:- end_category.

If necessary, we can put the predicate directives inside a protocol that will be imple-
mented by the category:

:- category(attributes,
implements(attributes_protocol)).
...

:- end_category.

We reuse the category predicates by importing them into an object:

:- object(person,
imports(attributes)).
...

:- end_object.

After compiling and loading this object and our category, we can now try queries like:

| ?- person::(set_attribute(name, paul), set_attribute(age, 36)).

yes

| ?- person::get_attribute(Attribute, Value).

Attribute = name, Value = paul ;
Attribute = age, Value = 36 ;
no

5.6. Examples 119

Note that the interface of the category attributes is now part of the interface of the
object person. Most object-oriented programming language libraries provide dictionary
classes that we can reuse in our applications, either by multi-inheritance or by composi-
tion. In this example, multi-inheritance would result in viewing the object person as a
kind of dictionary, hardly an elegant solution. With object variable-based composition,
glue code will be needed to add the desired dictionary methods to the public interface of
person. Category-based composition thus provides an alternative solution without any
of these problems. Moreover, the resulting category can be reused in same application
or in other applications.

To further illustrate the differences between object variable-based and category-based
composition let me present another example using input/output operations. Assuming
a stream-based input/output model, any object may need to define, redirect, open, read,
write, or close new streams. Using a category-based approach, we may start by defining
a streaming category, containing predicates to maintain a dictionary of currently defined
streams:

:- category(streaming).

:- public(stream/2). % test/get pair name-stream
:- public(set_stream/2). % define a new pair name-stream
...

:- end_category.

This category may also implement common stream operations. Any object whose in-
terface must include stream input/output operations will, then, be able to import this
category:

:- object(an_object,
imports(streaming)).
...

:- end_object.

This way, it would be possible for us to query the object (or its descendants) about the
streams it defines by using messages such as:

| ?- an_object::stream(Name, Stream).

If an object variable-based solution is preferred or needed, we can still reuse the stream-
ing category by first importing the category into a class:

:- object(streams,
imports(streaming),
instantiates(class), % some suitable metaclass
specializes(object)). % some suitable inheritance root
...

:- end_ object.

We can now store instances of this object in instance-variables of any object that needs
to perform stream input/output operations. For example:

120 Chapter 5. Categories

:- object(an_object,
imports(attributes)). % from the previous example

init :-
streams::new(Strs),
::set_attribute(streams, Strs),
...

...

:- end_ object.

However, the streaming methods can no longer be used directly:

| ?- an_object::set_stream(Name, Stream).

uncaught exception:
error(existence_error(

predicate_declaration, set_stream(Name, Stream)),
an_object::set_stream(Name, Stream), user)

Messages like this will now generate unknown message exceptions because the streaming
protocol is no longer part of the object protocol.

5.6.4 Hierarchy relations

One of the Logtalk companion examples defines a set of categories implementing meth-
ods for inspecting object hierarchy relations. Some methods can be defined for both
prototype and class hierarchies, and their declarations can be abstracted in a common
protocol:

:- protocol(hierarchyp).

:- public(leaf/1). % test/get an hierarchy leaf
:- public(leaves/1). % get list of all hierarchy leaves
...

:- end_protocol.

For prototype hierarchies, we can define methods such as parent/1, ancestor/1, or
descendant/1:

:- category(p_hierarchy,
implements(hierarchyp)).

:- public(ancestor/1). % test/get an ancestor prototype
:- public(descendant/1). % test/get a descendant prototype
:- public(parent/1). % test/get a parent prototype
...

:- end_category.

5.6. Examples 121

While for instance/class relations we can have methods such as instance/1, class/1,
or superclass/1:

:- category(ic_hierarchy,
implements(hierarchyp)).

:- public(class/1). % test/get an instance class
:- public(instance/1). % test/get a class instance
:- public(superclass/1). % test/get a class superclass
...

:- end_category.

Although these methods are potentially useful for any object, most objects will never use
them. Most applications do not need to perform reflective computations. In languages
like Smalltalk or Java, this kind of methods must be added to the root object in order
to be available for any object that may need them. By encapsulating these methods
in a category, they can be added to the interface of only those objects that really need
them.

5.6.5 Monitoring category

Besides integrating logic and object-oriented programming, Logtalk also supports event-
driven programming where an event is generated every time a message is exchanged
between objects. Any object may act as a monitor for a registered event. A minimal
monitor protocol consists only of a callback method, but more sophisticated behavior
is possible. For instance, an object may need to keep a dictionary of events that can
be modified, activated, or suspended. However, not all application objects will act as
monitors and, among those that do, some may only need basic behavior. Encapsulat-
ing the monitor methods in a root object will ensure the requirement that any object
may perform a monitor role but will also just clutter the interface of non-monitor ob-
jects. Moreover, not all applications use event-driven programming. Defining a category
containing monitoring predicates will solve these problems easily:

:- category(monitoring).

:- public(activate/0). % start monitoring
:- public(suspend/0). % suspend monitoring

:- public(reset/0). % stop and delete all events

:- public(add_event/4). % define a new event
:- public(del_event/4). % delete a defined event
:- public(event/4). % test/get a defined event
...

:- end_category.

122 Chapter 5. Categories

Any object that needs more complex monitor behavior just needs to import this category:

:- object(my_monitor,
imports(monitoring)).
...

:- end_object.

Alternatively, the root of any sub-hierarchy of monitor objects may import the category.
This way, objects that will never perform the role of monitors will not need to inherit a
set of useless methods. Applications that do not use event-driven programming will not
need to include code that will never be called.

5.6.6 Points

This example shows how categories may be used as an alternative to multi-inheritance
solutions. The description of the original problem can be found in the SICStus Objects
documentation [24], along with a solution using message delegation.

Assume that we want to represent points in a two-dimensional space. We can start
by creating a point class defining a method move/2 to translate a point to a new position,
and a method print/0 that outputs the current position:

:- object(point,
instantiates(class),
specializes(object)).

:- public(move/2). % move point to a new position
:- public(position/2). % test/get point position
:- public(print/0). % output current point position

:- private(xy_/2). % point position storage
:- dynamic(xy_/2).

move(X, Y) :-
::retractall(xy_(_, _)),
::assertz(xy_(X, Y)).

position(X, Y) :-
::xy_(X, Y).

print :-
self(Self),
::xy_(X, Y),
writeq(Self), write(’ @ ’), write((X, Y)), nl.

:- end_object.

From this base class, we would want to derive two sub-classes: bd point and hst point.
Instances of bd point can only move around in a restricted area. Instances of hst point
keep the history of its past positions. The new classes are easily defined by specialization
of the move/2 and print/0 methods:

5.6. Examples 123

:- object(bd_point,
instantiates(class),
specializes(point)).

:- private(bds_/3). % coordinate bounds storage
:- dynamic(bds_/3).

move(X, Y) :-
::bds_(x, MinX, MaxX),
X >= MinX, X =< MaxX,
::bds_(y, MinY, MaxY),
Y >= MinY, Y =< MaxY,
^^move(X, Y).

print :-
::bds_(x, MinX, MaxX),
writeq(bds(x)), write(’: ’), write((MinX, MaxX)), nl,
::bds_(y, MinY, MaxY),
writeq(bds(y)), write(’: ’), write((MinY, MaxY)), nl,
^^print.

:- end_object.

Similar for the hst point class:

:- object(hst_point,
instantiates(class),
specializes(point)).

:- private(hst_/1). % position history storage
:- dynamic(hst_/1).

move(X, Y) :-
::position(X0, Y0),
^^move(X, Y),
::retract(hst_(Hst)),
::assertz(hst_([(X0,Y0)| Hst])).

print :-
::hst_(Hst),
write(’history: ’), write(Hst), nl.
^^print.

:- end_object.

Now, assume that we want to define another sub-class, named bd hst point, which
combines the behavior of both bd point and hst point. This would suggest a multiple
inheritance solution: bd hst point clearly specializes both bd point and hst point,
sub-classes of point. However, this solution, even if possible, hides several problems.

124 Chapter 5. Categories

The first obstacle would be that the bounded and the history behavior are embedded
in the specialization of methods move/2 and print/0. Defining new methods such as
check bds/2 and print bds/2 in class bd point, and add to hst/2 and print hst/0
in class hst point can easily solve this particular problem. A bigger problem would
be the fact that the basic behavior for moving or printing a point is defined in class
point. However, being the corresponding methods redefined in classes bd point and
hst point, how does one call the original definitions stored in point? Note that if the
methods move/2 and print/0 are inherited from both hst point and bd point, a point
will be then moved and printed twice. If the inheritance is carried out, for each method,
only from one of the superclasses, then we will be breaking the problem symmetry. The
class bd hst point could build its own definitions of methods move/2 and print/0, by
redefining the methods inherited from one superclass in order to call the methods specific
of the other superclass. However, this solution would also prove to be problematic. Let
us assume that the method move/2 is inherited from class hst point (by using some
suitable super call). Any change on the definition of the same method in class bd point
will then be ignored by bd hst point. In a large program, such problems can easily pass
unnoticed because the symmetry suggested by the multiple inheritance design would not
be reflected by the actual implementation. This problem could be avoided by explicitly
adding the class point as a base class for bd hst point. For example, in Eiffel we would
need to rename (and discard!) the conflicting inherited methods of both base classes:

class
bd_hst_point

inherit
bd_point

rename
move as bp_move,
print as bp_print

end
hst_point

rename
move as hp_move,
print as hp_print

end
point

redefine move, print end

feature
print is
do

precursor
print_bds
print_hst

end
...

end

This solution could also be implemented in C++ using virtual base classes:

5.6. Examples 125

class bd_hst_point
: public virtual point, public bd_point, public hst_point {

...
void print();
...

}

void bd_hst_point::print()
{

point::print();
bd_point::print();
hst_point::print();

}

This way, the class point will provide the basic behavior for the move/2 and print/0
methods. These two methods are redefined in order to include the needed calls to the
methods inherited from classes bd point and hst point that implement the bounded
behavior and the history behavior.

In Logtalk, we can use categories to solve this problem in a clean and extensible way
without using multi-inheritance. In order to do so, we will start by defining two new
categories, bd coord and point hst. The bd coord category will contain the methods
associated with point coordinate bounds:

:- category(bd_coord).

:- public(set_bds/3). % store a coordinate bounds
:- public(bds/3). % test/get coordinate bounds
:- public(check_bds/2). % checks coordinate value
:- public(print_bds/1). % print a coordinate bounds

:- private(bds_/3). % coordinate bounds storage
:- dynamic(bds_/3).

set_bds(Coord, Min, Max) :-
::retractall(bds_(Coord, _, _)),
::assertz(bds_(Coord, Min, Max)).

bds(Coord, Min, Max) :-
::bds_(Coord, Min, Max).

check_bds(Coord, Value) :-
::bds_(Coord, Min, Max),
Value >= Min, Value =< Max.

print_bds(Coord) :-
::bds_(Coord, Min, Max),
writeq(bds(Coord)), write(’: ’), write((Min, Max)), nl.

:- end_category.

126 Chapter 5. Categories

The methods for storing previous point positions will be encapsulated in the point hst
category:

:- category(point_hst).

:- public(add_to_hst/1). % store a point position
:- public(init_hst/1). % initialize position history
:- public(hst/1). % get the point history
:- public(print_hst/0). % print the point history

:- private(hst_/1). % position history storage
:- dynamic(hst_/1).

add_to_hst(Pos) :-
::retract(hst_(Hst)),
::assertz(hst_([Pos| Hst])).

init_hst(Hst) :-
::retractall(hst_(_)),
::assertz(hst_(Hst)).

hst(Hst) :-
::hst_(Hst).

print_hst :-
::hst_(Hst),
write(’history: ’), write(Hst), nl.

:- end_category.

Each one of the bd point, hst point and bd hst point classes will import the related
categories in order to provide the intended behavior:

:- object(bd_point,
imports(bd_coord),
instantiates(class),
specializes(point)).

move(X, Y) :-
::check_bds(x, X),
::check_bds(y, Y),
^^move(X, Y).

print :-
::print_bds(x),
::print_bds(y),
^^print.

:- end_object.

5.6. Examples 127

The same for the hst point class:

:- object(hst_point,
imports(point_hst),
instantiates(class),
specializes(point)).

move(X, Y) :-
::position(X0, Y0),
^^move(X, Y),
::add_to_hst((X0, Y0)).

print :-
::print_hst,
^^print.

:- end_object.

The bd hst point class will be defined as a point subclass, importing both point hst
and bd coord categories:

:- object(bd_hst_point,
imports(bd_coord, point_hst),
instantiates(class),
specializes(point)).

move(X, Y) :-
::check_bds(x, X),
::check_bds(y, Y),
::position(X0, Y0),
^^move(X, Y),
::add_to_hst((X0, Y0)).

print :-
::print_bds(x),
::print_bds(y),
::print_hst,
^^print.

:- end_object.

Note that the redefinition of our classes using the newly defined categories is transparent
to the classes clients and descendants. Also, note that bd hst point is independent
of both bd point and hst point, and yet it shares their behavior via the common
imported categories. This solution can be easily extended if we need to add other
point flavors besides coordinate bounds or position history. Using categories, we just
import into an object each category implementing a desired flavor, no matter how many
flavors and flavor combinations we may have. This compares favorably with a multi-
inheritance solution where each new flavor will need to be implemented as a new sub-
class, possibly inheriting from several other flavor sub-classes, resulting in high levels

128 Chapter 5. Categories

of coupling between objects. We have thus found, not only an alternative solution to
the use of multi-inheritance, but also a better one: a way to freely combine multiple
orthogonal implementations without applying multi-inheritance mechanisms.

To better illustrate this example, here are some possible messages sent using the
Logtalk top-level interpreter:

| ?- point::new(P,[xy-(1, 3)]).

P = p1
yes

| ?- p1::(print, move(7, 4), print).

p1 @ (1, 3)
p1 @ (7, 4)

yes

Similar messages but with bounds on coordinate values:

| ?- bd_point::new(P, [xy-(1, 3), bds(x)-(0, 13), bds(y)-(-7, 7)]).

P = bp2
yes

| ?- bp2::(print, move(7, 4), print).

bds(x): 0,13
bds(y): -7,7
bp2 @ (1, 3)

bds(x): 0,13
bds(y): -7,7
bp2 @ (7, 4)

yes

Same problem but storing the history of past point positions:

| ?- hst_point::new(P, [xy-(1, 3)]).

P = hp3
yes

| ?- hp3::(print, move(7, 4), print).

history: []
hp3 @ (1, 3)

history: [(1,3)]

5.7. Summary 129

hp3 @ (7, 4)

yes

Same problem but with bounds on coordinate values and storing past positions:

| ?- bd_hst_point::new(P, [xy-(1, 3), bds(x)-(0, 13), bds(y)-(-7, 7)]).

P = bhp4
yes

| ?- bhp4::(print, move(7, 4), print).

bds(x): 0,13
bds(y): -7,7
history: []
bhp4 @ (1, 3)

bds(x): 0,13
bds(y): -7,7
history: [(1,3)]
bhp4 @ (7, 4)

yes

5.7 Summary

Logtalk categories are a simple and natural evolution of the original Smalltalk category
concept, easily implemented by using the same compilation techniques that we apply to
objects. Despite its simplicity, categories enable good solutions for reusing sets of utility
methods and for implementing multi-inheritance designs.

Categories provide a way to encapsulate a set of related predicate definitions that
do not represent an object and that only make sense when composed with other pred-
icates. Categories may also be used to break a complex object in functional units. A
category can be imported by several objects (without code duplication), including ob-
jects participating in prototype or class-based hierarchies. As such, categories provide
a straightforward solution for component-based programming in Logtalk.

The category concept is being actively used in the development of the Logtalk stan-
dard library and is being evaluated by writing Logtalk applications. Logtalk, viewed
as an object-oriented programming research language, is a natural environment for try-
ing out new ideas. However, adding a new feature to an established language must
always be carefully pondered. I believe that the category concept here presented brings
several important advantages to object-oriented languages and, in particular, to single
inheritance languages.

Summarizing the main results, categories can be used to:

• Provide alternative solutions to the use of multi-inheritance for single-inheritance
languages. Categories enable elegant implementations that minimize object cou-
pling even in the context of multi-inheritance languages.

130 Chapter 5. Categories

• Complement object variable-based composition by providing a composition me-
chanism where composed methods are at the same level as the container object
methods, with full run-time transparency. Category imported methods are called,
redefined, and otherwise used like any container object method.

• Enable different, unrelated objects, to share and reuse methods without using in-
heritance. This way methods can be made available to only those objects that
really need them, avoiding large root objects populated with code that most de-
scendants will never use.

• Split complex objects into a set of more manageable components, each containing
a functionally cohesive set of methods that can be independently developed, com-
piled, and reused. Besides the advantages of incremental compilation, categories
also make it possible to update an object without accessing its full source code.

• Encapsulate code that does not fit the notion of, or does not make sense as, an
object. Two good examples are the Smalltalk dependency mechanism and the
Logtalk monitoring methods.

It is also important not to forget the benefits that are inherited from the origi-
nal Smalltalk-80 concept of methods functional categories, regarding code documenta-
tion and organization. Tacked together, all these features promote cleaner and simpler
object-oriented designs and help improve code reuse across object-oriented applications.

An interesting research path will be to implement categories in common languages
like Java or Smalltalk, either by using a preprocessor approach or by modifying an
existing compiler. A good candidate would be a language like Squeak, a Smalltalk
system written in Smalltalk itself, making it easy to modify it to try out new features.
We expect categories to be easy to implement in dynamically type checked languages
and, with some more work, in statically type checked languages like C++, retaining all
the features presented in this chapter.

Future work may also include extending the Logtalk concept of categories to include
some of the features of Objective-C categories, in particular, the possibility of augment-
ing a class protocol without modifying its source code. Note that Logtalk categories
already enable us to update an object interface by updating an imported category, but
the imports clause cannot be added or changed at runtime. A possible solution may
be to adopt a mechanism to establish an import link without requiring sources changes
on either importing objects or imported categories. Another possible, more explicit
and declarative solution, would be to allow an object to import a set of matching cat-
egories. Extending the identity concept to allow category names with the same name
but different arguments, we could then write:

:- object(an_obj,
imports(a_ctg(_)). % import all matching categories

...

:- end_object.

If we then have the following two matching categories:

5.7. Summary 131

:- category(a_ctg(foo)).

:- public(foo/1).
...

:- end_category.

:- category(a_ctg(bar)).

:- public(bar/1).
...

:- end_category.

Our object could then answer messages defined in all matching categories. For example:

| ?- an_obj::(foo(X), bar(Y)).

This solution is not difficult to implement but, as a language feature, it will probably
be a source of misunderstandings, as it uses the same syntax of parametric objects with
a very different semantics. It is also not clear that its benefits will outweigh the added
complexity.

Chapter 6

Events

The concepts of events and monitors are an essential part of the inner workings of oper-
ating systems, graphical user interfaces, control and automation applications, and some
programming languages and knowledge representation systems. Logtalk features events
and monitors as language primitives. Therefore, Logtalk support for event-driven pro-
gramming is at the same level as the support for object-oriented programming. Event-
driven programming serves two main purposes. First, it complements the reflective
capabilities of Logtalk. Second, it enables clean solutions for implementing complex
object relations. Logtalk events are implemented at the message sending mechanism
level. The implementation is fully portable across Prolog compilers and does not rely
on the underlying operating system.

This chapter begins by presenting the Logtalk concepts of event and monitor, com-
paring them with related work, including access-oriented programming and Smalltalk
dependency and event mechanisms. Secondly, the mechanisms for event generation
and for communicating events to monitors are explained. Then, the Logtalk built-in
predicates for event handling are described. Finally, some examples of event-driven
programming are presented.

6.1 Events and monitors as language primitives

The words event and monitor have multiple meanings in computer science. Therefore,
to avoid misunderstandings, this section starts by defining these concepts in the context
of Logtalk event-driven programming.

6.1.1 Event definition

In an object-oriented application, all computations start by message sending. Conse-
quently, sending a message can be interpreted as the primary event that occurs in these
applications. Therefore, Logtalk defines an event as the sending of a message to an
object.

By interpreting message processing as an atomic activity, the sending of a message,
and the return of the control back to the sender, can be interpreted as two distinct
events. This distinction is important as it enables a finer control over an application
dynamics. In Logtalk, these two events are named before and after for message sending
and return of control to the sender, respectively. An event can thus be represented by

133

134 Chapter 6. Events

the following ordered tuple:

(Event, Object, Message, Sender)

When one of the elements of this tuple is a free variable, or a term containing free
variables, the tuple will specify not an event but a set of matching events. For example,
the following tuple:

(after, list, _, _)

specifies all after events of any message sent by any object to the object list. Although
processing a message results in two events being generated, the user defines which events
are relevant and which objects should be notified of their occurrence. This translates
into the concepts of event registration and monitor, which will be explained next.

6.1.2 Monitor definition

The concept of monitor complements the concept of event. In Logtalk, a monitor is an
object that is automatically notified when a watched event occurs. The event notifica-
tions are performed by the runtime message sending mechanism and take the form of
a call to the monitor event handlers. An event handler is a user-defined method whose
arguments are the event description1. Event handling is performed by the method
before/3 for before events, and by the method after/3 for after events. The before
and after events associated to a message sending are independent. Therefore, a monitor
may chose to be notified of the occurrence of either one or both events.

Conceptually, an event notification is performed by sending the corresponding mes-
sage to the monitor object. Thus, event handling corresponds to the execution of a
method — the event handler — in order to answer a message. In practice, the event
handler call is determined and cached in the event registry table (discussed below) when
the event is defined2. This optimization avoids constructing the event handler call at
runtime, greatly improving performance (this and other implementation-related ques-
tions will be further discussed in Chapter 8).

Together with the definition of event, these definitions of monitor, event handler, and
event notification, allow us to interpret the key concepts of event-driven programming
in terms of object-oriented programming concepts. An alternative way of describing
Logtalk event-driven programming is to see the runtime engine as a kind of meta-
object defining a method implementing message processing. This method, coupled with
an event registration table, is also responsible for sending the messages before/3 and
after/3 to objects playing the role of monitors.

6.1.3 Event registration

For an object to act as a monitor, the events for which it needs to be notified must be
registered with the runtime engine. The registration is accomplished by calling a Logtalk
built-in predicate that will be described later on this chapter. Event registrations can
either be performed by the monitor itself or by another object on its behalf. An event

1Event handlers are also known as callbacks on some programming languages.
2The compilation of the event handler call term can be regarded as an instance of static binding.

6.1. Events and monitors as language primitives 135

registration can be represented by the following ordered tuple:

(Event, Object, Message, Sender, Monitor, Handler)

The last tuple element, Handler, contains the compiled call to the monitor event handler.
The scope of the event registry table is global. This table is consulted by the message

sending mechanism every time a message is processed in order to know which events to
dispatch to which objects. Thus, the task of generating events and dispatching them
to the registered monitors is performed by the message sending mechanism. Several
monitors may need to be notified of the occurrence of the same event, each one for its
own reasons. Therefore, the number of registered events is only bounded by the available
computing resources.

An object acts as a monitor while there is an event table entry for it. Therefore,
the monitor status of an object is toggled by registering and unregistering events. In
addition, any static object can act as a monitor because the monitor status is not stored
in the object itself.

6.1.4 Event-driven programming

The integration of object-oriented and event-driven programming aims to achieve the
following goals:

• Provide a framework for building reflective applications based on the dynamic
behavior of objects.

Event-driven programming provides support for behavioral reflection. Behavioral reflec-
tion can be defined as reflection about the dynamic behavior of an application resulting
from message sending. Therefore, events complement the Logtalk support for structural
reflection, which is provided by the built-in predicates and methods that allows us to
perform reflective computations about entities, entity properties, entity predicates, and
entity relations. Structural reflection can be defined as reflection about the structure of
entities (meaning, its predicates) and about the relations between entities3.

• Maximize object cohesion and minimize object coupling. An object should only
contain its intrinsic properties. Objects should depend only on the public protocol
of other objects, not on the protocol implementation.

Logtalk event-driven programming enables clean solutions for implementing dependency
relations between objects. By defining dependent objects as monitors, their existence
can be made transparent to the object they depend on. Furthermore, the methods of
monitored objects do not need to contain any code anticipating possible dependency
relations. These solutions provide several advantages over those found on other pro-
gramming languages, as will be discussed next.

6.1.5 Related work

In this subsection a comparison is made between Logtalk event-driven programming and
related work in other programming languages. Of particular relevance are the Smalltalk

3Note that these definitions of behavioral and structural reflection are a Logtalk interpretation of
more general reflection concepts described, for example, in [95].

136 Chapter 6. Events

dependency and event mechanisms and their abstraction, the observer design pattern.
Although there are other languages supporting some sort of event-driven programming,
these Smalltalk mechanisms are the most influential ones in the design of the Logtalk
event model. Comparisons with access-oriented programming and with CLOS standard
method combination are also made.

Smalltalk dependency mechanism

Smalltalk-80 [19] and most of its descendant systems implement an event notification
mechanism based on the notion of dependent object. A dependent object is an object
that is notified when another object changes. The Smalltalk root class, Object, imple-
ments a set of methods to handle dependent objects. The method addDependent: adds
an object to the list of dependent objects. The method removeDependent: removes an
object from the list of dependent objects. The list of dependent objects can be retrieved
(as a collection) using the method dependents. Two methods, changed and changed:,
allow an object to inform all dependent objects of its changes. The implementation of
these methods consists of sending the message update: to all dependent objects. The
messages changed and changed: are sent to self by the instance methods that result
in state changes. All dependent objects are notified of all changes, irrespective of the
relevance a particular change might have to each of them. For applications in which
dependent objects must be notified of any change on the observed object, this mecha-
nism implements the desired behavior. For other applications in which objects depend
only on specific aspects of the observed object, this mechanism is highly inefficient as
it implies that each dependent object must parse every update message to verify its
relevance.

Smalltalk event mechanism

In addition to the dependency mechanism presented above, most Smalltalk implementa-
tions include an event mechanism that allows dependent objects to register for specific
events. In this mechanism, dependent objects are not added to the dependents list of
the observed object. Instead, dependent objects register the events they are interested
in with objects that are capable of triggering such events. When registering an event, a
dependent object specifies the event triggering conditions, the message that should be
sent, and the object that should be notified when the event occurs. To register an event,
a dependent object sends the message when:send:to: to the object that it depends on.
To trigger an event, an object sends to itself the message triggerEvent: (or one of its
variants). This message plays a similar role to the message changed: in the dependency
mechanism.

Logtalk events versus Smalltalk dependency and event mechanisms

Although both Smalltalk and Logtalk recognize the need for an event notification mech-
anism, the corresponding implementations differ in some important ways. While Logtalk
events are implemented at the message sending mechanism level, Smalltalk dependency
and event mechanisms are implemented at the class level. As such, Logtalk uses a global
event registry table while Smalltalk stores dependent objects and events in the classes
themselves.

6.1. Events and monitors as language primitives 137

In Smalltalk, the responsibility for notifying dependent objects belongs to the ob-
served object methods. Therefore, an object has full control of when and how its de-
pendent objects are notified. In addition, an object is responsible for defining which
events it can trigger, and thus which events can be registered by dependent objects.
This implies a level of object coupling between an observed object and its dependents,
which does not exist in a Logtalk event-driven solution. In the development of Smalltalk
applications whose objects will use the dependency or event mechanisms, we must add
the calls that will trigger the event notifications to all relevant methods. However, the
reuse of an existing class may require similar changes to its methods. This is possible
only if the class source code is available and changes are allowed. An alternative will be
to create a subclass where the relevant methods will be specialized in order to trigger
the event notifications. None of these problems exists in Logtalk, where the existence of
monitored events is completely transparent to the observed objects: Logtalk events are
defined by the dependent objects. Moreover, the runtime engine is the sole responsible
for event notification. Note that, in Logtalk, every public message is a potential event,
while in Smalltalk (and in other programming languages that implement similar mecha-
nisms) events are defined either implicitly (in the dependency mechanism) or explicitly
(in the event mechanism) by the observed object.

While adding dependents to an object or registering events is easy, undoing these
operations can be tricky and expensive. Depending on the Smalltalk implementation,
garbage-collected dependent objects may or may not be automatically removed from
the observer objects. Events may also need to be unregistered because a dependent
object no longer needs to be notified of their occurrence. In this case, a message must
be sent to all triggering objects to remove the dependent object. Unregistering events
is straightforward in Logtalk due to its global event registry table. In addition, we can
take advantage of pattern matching to delete all events related to a dependent object
with a single call.

When evaluating performance, it should be noted that events add an overhead to
every message sent using the ::/2 control construct. Although the current implementa-
tion is very efficient, this overhead exists even when no events are defined. The Smalltalk
implementation of the dependency and event mechanisms limits its performance costs
to the objects participating in the dependency relation.

As expected, the Logtalk and Smalltalk event-notification mechanisms implement
different sets of features and trade-offs. However, the Logtalk support for event-driven
programming does not preclude the use of Smalltalk-like dependency and event mech-
anisms. The Logtalk companion library already contains an implementation of the
Smalltalk-80 dependency mechanism implemented through two categories that can be
imported by any object.

Observer design pattern

The dependency and event mechanisms of Smalltalk can been abstracted as a reusable
design pattern, usually named “Observer” [96], that is described as follows:

“Define a one-to-many dependency between objects so that when one object changes
state, all its dependents are notified and updated automatically”.

Besides Smalltalk implementations, variations of this design pattern can be also found on
other object-oriented programming languages. For example, the Java API [97] provides

138 Chapter 6. Events

an implementation for this design pattern through the interface java.util.Observer
and the class java.util.Observable. Most implementations of this design pattern,
including the Java one, suffer from the problems already described for the Smalltalk
dependency and event mechanism implementations.

Access-oriented programming

Event-driven programming and access-oriented programming share the concept of run-
ning a procedure whenever certain events occur. In access-oriented programming, proce-
dures can be run whenever a variable is accessed or updated. These procedures are often
named daemons on Artificial Intelligence systems such as KEE [17]. An example of a
language supporting access-oriented programming is the Lisp multi-paradigm extension
LOOPS [18]. Support for access-oriented programming can also be found on some Pro-
log object-oriented extensions such as SICStus Objects [24] and LPA Prolog++ [48, 47].
On SICStus Objects, assert and retract methods can be redefined to perform additional
operations when an object database is updated. Prolog++ specifies two user-defined
methods that are automatically called when an object attribute value is updated. The
first method, named invalid/2, is used for validating the new attribute value. The
second method, named when assigned/2, is called upon successful assignment of the
new attribute value.

Despite sharing the concepts of event and event-handler, there are some key dif-
ferences between event-driven programming (as implemented in Logtalk) and access-
oriented programming as found on SICStus Objects or Prolog++. These differences
reflect the different scope of each programming technique. First, access-oriented pro-
gramming events are related to variable access and update4, while Logtalk interprets
any message sent to an object as an event. Second, in Logtalk, any object can play
the role of a monitor while in SICStus Objects and Prolog++ the event handlers are
contained in the same object that contains the variable being accessed.

CLOS before and after methods

The Common Lisp Object System (CLOS) [54] defines before and after methods in the
context of standard method combination. As such, these methods are not related to
event-driven programming. They are mentioned here to avoid any misunderstandings
with the use of the same names in Logtalk. Nevertheless, it is interesting to note the
similarity between the Logtalk calling mechanism for event handlers and the CLOS
calling mechanism for before and after methods. In both languages, sending a message
implies calling all the corresponding before methods, followed by execution of the method
selected to answer the message, and then all the corresponding after methods. A key
difference is that, while in Logtalk any object can play the role of monitor and thus
define before and after event handlers, CLOS before and after methods are attached to
the classes along the inheritance chain containing the class defining the corresponding
primary method. In addition, while in Logtalk the order of calling the event handlers
is assumed arbitrary, CLOS before methods are called starting with the most specific
one, whereas after methods are called starting with the most general one. Logtalk also
provides built-in predicates for dynamically defining and abolishing events, thus toggling

4Prolog++ also supports attaching methods to instance creation and abolishing.

6.2. Message sending and event generation 139

the role of monitor of an object and the call of its event handlers. There is no equivalent
predefined functionality in CLOS.

6.2 Message sending and event generation

For each message sent using the ::/2 message sending control construct, the runtime
engine automatically generates a before event and an after event. The before event is
generated after validating the message but before calling the method selected to respond
to it. In case the message is not valid, no before event is generated. The after event is
generated after the selected method has successfully been executed. In case the selected
method fails, the after event is not generated.

Messages sent using the message to self (::/1) or the super call (^^/1) control con-
structs do not generate events. The rationale behind this design choice is that messages
to self and super calls are only used indirectly in the definition of methods or to execute
additional messages within the same target object (represented by self). Therefore,
events are only generated when an object uses the public protocol of another object.
As such, an object cannot use events to break the encapsulation of other objects (for
example, to find which methods are specialized by monitoring super calls or how meth-
ods are implemented by monitoring messages to self). Nevertheless, the workaround for
generating events for messages sent to self is very simple:

Predicate :-
...,
self(Self), % get self reference
Self::Message, % send a message to self using ::/2
... .

In addition, if we need the sender of the message to be other than the object containing
the predicate definition, we can write instead:

Predicate :-
...,
self(Self),
{Self::Message},
... .

The use of the {}/1 control construct for encapsulating the message sending will result
in the message being sent by the pseudo-object user.

Events are generated only for messages that correspond to user-defined methods.
Calls to built-in methods do not generate events. This design choice was made because
built-in methods are generally used only in the body of predicate definitions as messages
to self (note that built-in methods cannot be redefined by the user). In addition, this
allows us to optimize calls to built-in methods.

6.3 Communicating events to monitors

Whenever a watched event occurs, the message sending mechanism automatically noti-
fies all monitors registered for that event. An event notification is performed by a direct

140 Chapter 6. Events

call to the corresponding monitor event handler. The event handler calls are made by-
passing the message sending mechanism in order to improve performance and to avoid
potential endless loops.

6.3.1 Defining event handlers

The event handler for before events is the predicate before/3. The event handler for
after events is the predicate after/3. Any object acting as a monitor must define one
or both of these event handler predicates, depending on the registered events:

before(Object, Message, Sender) :-
... .

after(Object, Message, Sender) :-
... .

The arguments of both methods are instantiated by the message sending mechanism
when a watched event occurs.

The event handler methods have no declared scope. Therefore, they work as local,
and thus private, predicates. In order to give an explicit scope to these methods, one
may define a protocol containing the intended declarations. For example, the Logtalk
library contains the following protocol:

:- protocol(event_handlersp).

:- info([
version is 1.0,
author is ’Paulo Moura’,
date is 2000/7/24,
comment is ’Event handlers protocol.’]).

:- public(before/3).
:- mode(before(@object, @nonvar, @object), zero_or_one).
:- info(before/3, [

comment is ’Event handler for before events.’,
argnames is [’Object’, ’Message’, ’Sender’]]).

:- public(after/3).
:- mode(after(@object, @nonvar, @object), zero_or_one).
:- info(after/3, [

comment is ’Event handler for after events.’,
argnames is [’Object’, ’Message’, ’Sender’]]).

:- end_protocol.

Using this protocol, our monitor objects would be defined as follows:

:- object(monitor,
implements(event_handlersp), ...).
...

:- end_object.

6.3. Communicating events to monitors 141

Declaring event handlers as public or protected predicates enables the specialization of
event handler definitions inherited from an ancestor object5. However, declaring the
event handlers as public predicates is not generally recommended, as these predicates
should only be called through the message sending mechanism. The alternative will be
to write:

:- object(monitor,
implements(protected::event_handlersp),
...).
...

:- end_object.

This will make the scope of the monitor event handlers protected instead of public.

6.3.2 Event handler semantics

The established semantics for event handlers is that they must succeed as a necessary
condition so that the corresponding message can succeed. Specifically:

• All event handlers associated to a before event must succeed so that the message
can be sent. The failure of a before event handler prevents the execution of the
remaining event handlers and further message processing.

• All event handlers associated to an after event must succeed so that the message
itself succeeds. The failure of any event handler associated to an after event forces
backtracking over the message execution.

• The failure of an event handler never results on backtracking over the execution
of the preceding event handlers.

• The arguments of the event handlers are strictly input arguments. Any further
instantiation of these arguments resulting from the execution of an event handler
is discarded before proceeding to the next event handler or processing the watched
message.

These are the most generic design choices under the constraints of the event and monitor
properties described earlier. The independence between monitors implies that the failure
of an event handler must not result on backtracking over the event handlers executed
before it. In addition, as multiple monitors may be notified of the same event, further
instantiation of event handler arguments must be discarded to ensure that the results
of the processing of a message does not depend on the order of event handler calls.

The semantics of before event handlers allows them to be used as guards for message
execution. The semantics of after event handlers allows them to be used for testing, and
possibly rejecting, message results. The existence of a monitor can be made transparent
to message processing by defining its event handlers so that they never fail (which is
trivial to accomplish).

5The super call, ^^/1, always checks the predicate declaration of its argument.

142 Chapter 6. Events

6.3.3 Activation order of event handlers

Ideally, whenever there are several monitors defined for the same event, the calling order
of the respective event handlers should be irrelevant for the final result. However, this
is not always possible. If an event handler has side effects (for example, input/output
operations or object state changes), different calling orders may lead to different results
when an event handler fails, as the following event handlers will no longer be activated.
Moreover, the order of event handler activation should be assumed as being arbitrary.
To assume or to try to impose a specific sequence implies a global knowledge of an
application dynamics, which is not always possible. In addition, that knowledge can
reveal itself as incorrect if the execution conditions change.

6.4 Event registration

Logtalk provides three built-in predicates for handling the event registration table.
These predicates enable us to find which events are defined, to define new events, and
to abolish events when they are no longer necessary. For applications that rely heavily
on event-driven programming, the best approach will be to define a set of objects that
will use the built-in predicates described below to implement higher-level behavior.

6.4.1 Defining new events

New events can be defined using the built-in predicate define events/5:

| ?- define_events(Event, Object, Message, Sender, Monitor).

Only the last argument, Monitor, needs to be instantiated when calling this predicate.
For example, the following call:

| ?- define_events(after, _, _, _, monitor).

sets the object monitor to act as a monitor for the after events of every message sending.
Thus, when called with arguments containing free variables, this predicate defines not
an event but a set of matching events.

6.4.2 Abolishing defined events

Events that should no longer be spied may be abolished by calling the built-in predicate
abolish events/5:

| ?- abolish_events(Event, Object, Message, Sender, Monitor).

Calling the predicate with free variables will remove all matching events.

6.4.3 Finding defined events

The events that are currently defined can be retrieved using the Logtalk built-in predi-
cate current event/5:

| ?- current_event(Event, Object, Message, Sender, Monitor).

Note that this predicate may return not a single event but a set of matching events if
free variables are used in the definition of new events.

6.5. Examples 143

6.5 Examples

This section presents three simple examples of event-driven programming in Logtalk.
The first two examples illustrate the implementation of common reflective applications,
such as debuggers and profilers, using events and monitors. The third example shows
how relations between objects can be implemented using events to maintain relation
constraints. The full source code of these (and similar) examples is available in the
current Logtalk distribution.

6.5.1 Tracing messages

Assume that we want to track any message sent to an object by printing a descriptive
text to the standard output. This tracing behavior can be easily implemented by making
every message sending an event, and by defining a monitor that will print the required
text. A possible definition would be:

:- object(tracer).

before(Object, Message, Sender) :-
write(’call: ’), writeq(Object), write(’ <-- ’),
writeq(Message), write(’ from ’), writeq(Sender), nl.

after(Object, Message, Sender) :-
write(’exit: ’), writeq(Object), write(’ <-- ’),
writeq(Message), write(’ from ’), writeq(Sender), nl.

:- end_object.

After compiling and loading this object, we can start tracing every message sent to any
object by calling the define events/5 built-in predicate:

| ?- define_events(_, _, _, _, tracer).

yes

From now on, every message sent to any object will be traced to the standard output
stream. To illustrate this tracing behavior, we can use the objects from the metapredi-
cates example in Chapter 3, page 60. After compiling and loading the objects list and
sort() (first removing the calls to the metapredicate trace/1), using the same query
of the original example will result in the following output:

| ?- sort(user)::sort([3, 1, 4, 2, 9], Sorted).

call: sort(user) <- sort([3,1,4,2,9],_18) from user
call: list <- append([],[2],_132) from sort(user)
exit: list <- append([],[2],[2]) from sort(user)
call: list <- append([],[1,2],_157) from sort(user)
exit: list <- append([],[1,2],[1,2]) from sort(user)
call: list <- append([],[9],_200) from sort(user)
exit: list <- append([],[9],[9]) from sort(user)

144 Chapter 6. Events

call: list <- append([],[4,9],_225) from sort(user)
exit: list <- append([],[4,9],[4,9]) from sort(user)
call: list <- append([1,2],[3,4,9],_18) from sort(user)
exit: list <- append([1,2],[3,4,9],[1,2,3,4,9]) from sort(user)
exit: sort(user) <- sort([3,1,4,2,9],[1,2,3,4,9]) from user

Sorted = [1,2,3,4,9]
yes

To stop tracing messages, we can use the abolish events/5 built-in predicate:

| ?- abolish_events(_, _, _, _, tracer).

yes

This is a simple example of how events and monitors can be used for debugging Logtalk
programs. The current Logtalk library contains objects implementing a full debugger,
modeled after the four ports box control flow model common of Prolog debuggers, which
allows the programmers to trace and spy objects and messages.

6.5.2 Profiling

We can use events for profiling our programs. Assume, for example, that we want
to measure message execution time. We can define a new object, named stopwatch,
containing definitions for the before/3 and after/3 event handlers that will print,
respectively, the starting system time and ending system time whenever a spied message
is sent:

:- object(stopwatch).

before(Object, Message, Sender) :-
time::cpu_time(Seconds),
write(Object), write(’ <-- ’), writeq(Message),
write(’ from ’), write(Sender), nl,
write(’start: ’),
write(Seconds), write(’ seconds’), nl.

after(Object, Message, Sender) :-
time::cpu_time(Seconds),
write(Object), write(’ <-- ’), writeq(Message),
write(’ from ’), write(Sender), nl,
write(’end: ’),
write(Seconds), write(’ seconds’), nl.

:- end_object.

After compiling and loading the object stopwatch, we can profile, for example, every
message from any object to an object named list by making the appropriate call to
the built-in predicate define events/5:

| ?- define_events(_, list, _, _, stopwatch).

6.5. Examples 145

From now on, we will get the starting and ending execution time whenever a message
is sent to the object list. For example:

| ?- length([0,1,2,3,4,5,6,7,8,9], Length).

list <-- length([0,1,2,3,4,5,6,7,8,9], _7) from user
start: 1234.79946798 seconds
list <-- length([0,1,2,3,4,5,6,7,8,9], 10) from user
end: 1234.80048351 seconds

Length = 10
yes

When no more timing information is needed, we can remove the event definitions by
calling the built-in predicate abolish events/5:

| ?- abolish_events(_, list, _, _, stopwatch).

This simple example can be easily extended. Most Prolog systems give access to several
data regarding memory usage and timing information that can be used to define powerful
profilers for our programs.

6.5.3 Constrained object relations: a stack of blocks

Object relations may imply constraints on the state and behavior of participating ob-
jects. The representation of these relations must minimize object coupling between the
objects representing the relation and the objects participating on the relation. Logtalk
support for event-driven programming allows us to represent these dependency relations
between objects without breaking object encapsulation and minimizing object coupling.

Assume that we want to represent stacks of blocks, where each stack will comply
with the following two rules:

1. When moving a block, all blocks on top of it will move accordingly.

2. When moving a block that is on top of other block, the stacking relation between
them will be broken and the corresponding relation tuple will be deleted.

In order to simplify this example, it is assumed that all the blocks have the same
size and that they exist in a two-dimensional world. In addition, assuming that only one
block can be stacked on the top of another block, we can represent a stack as a binary
relation between blocks.

This example adopts a class-based solution. Blocks will be represented as instances of
class block, while the stacks of blocks will be represented by the instance block stack.
Assuming that the base classes presented in Chapter 1 for building reflective class-based
applications, the class block could be defined as follows:

:- object(block,
instantiates(class),
specializes(object)).

:- public(position/2).

146 Chapter 6. Events

:- public(move/2).

:- private(position_/2).
:- dynamic(position_/2).

position(X, Y) :-
::position_(X, Y).

move(X, Y) :-
::retractall(position_(_, _)),
::assertz(position_(X, Y)).

:- end_object.

Note that all the predicates contained in this object are intrinsic to it. No assump-
tions are made about possible relations that the block instances may participate into.
Specifically, the definition of the method move/2 does not contain any call to notify other
objects of state changes, as it would be necessary in a solution based on the Smalltalk
dependency or event mechanisms.

Assume that an object named relation, providing basic functionality to represent
relations between objects, is already defined as follows:

:- object(relation,
instantiates(class),
specializes(object)).

:- public(tuple/1). % table of relation tuples
:- public(add_tuple/1). % add a new relation tuple
:- public(remove_tuple/1). % remove a relation tuple
...

:- end_object.

We can now define block stack as an instance of class relation:

:- object(block_stack,
instantiates(relation)).

add_tuple([A, B]) :- % add a new tuple by first moving
B::position(Xb, Yb), % the top block A to the top of
Ya2 is Yb + 1, % block B and set block_stack as
{A::move(Xb, Ya2)}, % a monitor for both blocks
^^add_tuple([A, B]),
define_events(after, A, move(_, _), _, block_stack),
define_events(after, B, move(_, _), _, block_stack).

...

after(A, move(X, Y), Sender) :- % propagate changes to stack
\+ this(Sender), % blocks, avoiding loops:

6.5. Examples 147

::tuple([A, B]), !, % remove tuple if block A no
Y2 is Y - 1, % longer on top of block B
(B::position(X, Y2) ->

true
;
::remove_tuple([A, B])).

after(B, move(X, Y), Sender) :- % propagate changes to stack
\+ this(Sender), % blocks, avoiding loops:

::tuple([A, B]), !, % move block on top of block B
Y2 is Y + 1, % to its new position
{A::move(X, Y2)}.

:- end_object.

Note that the object block stack depends only on the public protocol of block instances
(position/2 and move/2). In this object, the event handler after/3 plays a similar role
to the Smalltalk update: method. The difference is that, while in Logtalk the method
after/3 is called by the runtime engine, in Smalltalk the method update: would be
called (indirectly via sending to self the message changed:) by the methods of class
block.

In order to make this example easier to follow, we can take advantage of Logtalk
event-driven programming to define an object, stack monitor, which will print an
ASCII representation of all blocks to the standard output every time one of them is
moved to a new position:

:- object(stack_monitor).

after(_, move(_, _), _) :- % pretty prints ascii
... . % stack representation

:- end_object.

After compiling and loading all the above objects, we can start by creating four block
instances, each one in a different initial position:

| ?- block::new(a, [position-(8, 1)]).
yes

| ?- block::new(b, [position-(6, 1)]).
yes

| ?- block::new(c, [position-(4, 1)]).
yes

| ?- block::new(d, [position-(2, 1)]).
yes

Before beginning to construct a stack of blocks by using the message add tuple/1, we
can set the object stack monitor as a monitor for all move/2 messages sent by any
object through the following call:

148 Chapter 6. Events

| ?- define_events(after, _, move(_,_), _, stack_monitor).
yes

To stack the four blocks we have created, we will need the following three calls:

| ?- block_stack::add_tuple([c,d]).
|.c......
.d...b.a
yes

| ?- block_stack::add_tuple([b,c]).
|.b......
|.c......
.d.....a
yes

| ?- block_stack::add_tuple([a,b]).
|.a
|.b
|.c
.d
yes

The above calls set block stack as a monitor for our four blocks:

| ?- current_events(after, Block, _, _, block_stack).
Block = a ;
Block = b ;
Block = c ;
Block = d
yes

As a first test, we can move the whole stack to a new position by moving its bottom
block:

| ?- d::move(9, 1).
|.a.......
|.b.......
|.c.......
........d
.a.......
.b.......
........c
........d

|.a.......

6.5. Examples 149

|........b
|........c
........d
........a
........b
........c
........d

yes

Note that stack monitor will print the current position of all blocks every time one
of them is moved. As expected, moving the block d triggers block stack to move the
block on top of it, c, which in turn triggers the block b to move, which triggers the move
of the block a.

As a second test, we can break the stack in half by moving the middle block b to
the “ground”:

| ?- b::move(3, 1).
|........a
|.........
|........c
..b.....d
..a.....c
..b.....d

yes

As in the first test, the move of the block b triggers block stack to move accordingly
the block a. In addition, the tuple [b, c] will be removed as it will no longer be valid,
as we can check with the following goal:

| ?- block_stack::tuple(Tuple), write(Tuple), nl, fail.
[c,d]
[a,b]
no

The stack can be folded back by creating, for example, the tuple [d, a]:

| ?- block_stack::add_tuple([d, a]).
|..d......
|..a.....c
..b......
..c
..d
..a
..b

yes

150 Chapter 6. Events

As a last test, we can once again move the whole stack to a new position by moving its
bottom block:

| ?- b::move(5, 1).
|..c..
|..d..
|..a..
....b
..c..
..d..
....a
....b

|..c..
|....d
|....a
....b
....c
....d
....a
....b

yes

This example could be easily extended to deal with other constraints on the stacked
blocks. For example, block stack could be set to also monitor the deletion of blocks and
to act accordingly. The Logtalk library contains classes for representation of relations
and constrained relations between objects. The example presented above and similar
examples (e.g. concentric relations between geometric shapes) can be found on the
current Logtalk distribution.

6.6 Summary

Logtalk support for event-driven programming has been achieved by reinterpreting the
concepts of event, monitor, event notification, and event handling in the context of
object-oriented programming. This reinterpretation allows us to view event-driven pro-
gramming as an instance of object-oriented programming, providing a conceptual inte-
gration of both programming paradigms. This translates into the implementation of the
event concepts as primitive language features, at the same level as objects and messages.
Logtalk therefore contrasts with other programming languages, such as Smalltalk and
Java, where those concepts are implemented at the application level. The implementa-
tion of events as a language intrinsic feature rises some performance issues. These will
be further discussed in Chapter 8.

Through event-driven programming, objects gain autonomy to act, i.e. they are no
longer restricted to being activated only when they receive a message. Events can be
used to log, react, control, and modify an application behavior.

6.6. Summary 151

Events complete the Logtalk framework for reflective computing. Specifically, events
provide Logtalk with support for behavioral reflection, complementing the support for
structural reflection provided by the Logtalk built-in predicates and built-in methods
already described in the previous chapters. Therefore, reflective applications, such as
debuggers and profilers, are easily defined in Logtalk.

Events allow the implementation of dependency relations between objects without
breaking object encapsulation. By defining dependent objects as monitors, the methods
of observed objects do not need contain any calls to event-related methods or any other
code that is not intrinsic to their nature. This maximizes object cohesion and, at the
same time, minimizes object coupling because dependent objects rely only on the public
protocol of observed objects. Therefore, any object can be (re)used — without any
modification — in applications where it will play the role of an observed object. This is
an important advantage of Logtalk event-driven programming solutions over Smalltalk-
based dependency and event mechanisms, which imply that the code of observed objects
take into account their participation in dependency relations. Logtalk event-driven
programming provides a solution for reusing objects whose methods do not support a
Smalltalk-type solution, and cannot be modified to add that support. Nevertheless,
Smalltalk-like dependency and event mechanisms are easily implemented in Logtalk
through library protocols and categories. Coupled with Logtalk event-driven support,
the user can choose the best solution for representing dependencies between objects on
a case-by-case basis.

Chapter 7

Documenting Logtalk programs

Logtalk provides support for automatic program documentation. By default, compil-
ing an object, category, or protocol, generates a documenting file containing essential
information about the compiled entity. It is easier to maintain source code and its docu-
mentation synchronized, if they are in the same file instead of in separated files. Logtalk
documenting features are focused on versioning and interface description information
and not on documenting algorithms and other high level code descriptions common to
literate programming tools [98].

This chapter begins by explaining the documenting language design choices. Sec-
ondly, the documenting file format is explained. Next, the Logtalk language support
for expressing arbitrary documenting information is presented. Finally, the automatic
generation of documenting files in the current Logtalk implementation is described.

7.1 Documenting language

Automatic generation of documenting files implies support both at the language level
and at the compiler level. At the language level, we must be able to represent arbi-
trary information about an entity and its predicates. At the compiler level, all relevant
information must be parsed, formatted, and written out to a documentation file.

Two common examples of automatic documenting tools are Javadoc [99] and Lpdoc
[100]. The first is a standard tool included in the Java SDK. The second is a tool for
documenting (C)LP systems, including Prolog programs. Javadoc uses specially for-
matted program comments to allow the user to specify documenting information. This
means that two languages will be used when writing programs: one language for code
and another language for documentation. This is an approach shared by most literate
programming tools such as CWEB [101] and its offsprings. Lpdoc defines a sophisticated
assertion language that can be seen as an extension of Prolog, made of a set of directives.
In both cases, we end up using two different tools: a language compiler and a separate
tool for extracting program documentation.

In Logtalk, an important design decision was to use the same language for both
code and documentation. After all, Logtalk is a declarative language. All document-
ing information in Logtalk source files is expressed using Logtalk directives. That is,
documenting directives are an integral part of the Logtalk language. This implies that
the Logtalk compiler is responsible for parsing and extracting all relevant documenting
information when an entity is compiled. Expressing documenting information in the

153

154 Chapter 7. Documenting Logtalk programs

Logtalk language itself, instead of extending it with foreign directives or using specially
formatted comments, has several advantages. First, any Logtalk code with relevant
documentation meaning can be easily summarized without being first rewritten in some
documenting language. Second, representing documentation by code (arguably much
easier and more feasible in declarative languages such as Prolog and Logtalk than in
most other programming languages), means that any integrated development tool must
understand only one language to access all the content of our programs. Third, it makes
program documentation a question of language design, instead of an afterthought dis-
connected from the language specification. An immediate consequence of this design
choice is that the compiler is responsible for the generation of documentation files. This
raises two questions. First, we must choose a documenting file format simple to gener-
ate and easy to convert to any desirable human or machine-readable format. Second,
we must design the Logtalk documenting directives so that the programmer can repre-
sent whatever information is needed without the need of revising the Logtalk language
specification. I will address these two questions in the following sections.

7.2 Documenting file format

The first generation of Logtalk (1.x) [27], released in 1995, included a set of objects that
generated object documentation in plain text, HTML [102], and LATEX2e [103] formats.
This set of objects shared the same basic structure but the output formats were different
enough to prevent significant code sharing. Generating documentation in another format
often implied writing a new object, even if we only needed a variation of the HTML
or LATEX2e output formats. Since then, the development of the XML standard [104]
provided a much better and flexible choice for the output of documentation files. XML
can be seen as a meta-language, allowing the definition of our own markup languages,
ideally suited for the representation of structured information. A common use is the
interchange of information between databases and legacy systems. Instead of generating
documentation in a final format (for printing or for on-line viewing), the current Logtalk
generation outputs a XML file when compiling an entity containing all the relevant
documenting information. Contents of the XML file include the entity name, type,
and compilation mode (static or dynamic), the entity relations with other entities, and
a description of any declared predicates (including name, compilation mode, scope,
and call modes). The documentation files can be enriched with arbitrary user-defined
information, either about an entity or about its predicates, by using two sets of directives
described in the next section. The structure of this documenting file is defined in the
Logtalk compiler. A formal specification of the documenting file format, using both
Document Type Definition (DTD) [105] and XML Schema [106] syntaxes, is described
in the appendix C. Representing entity documentation in XML format allows us to use
the growing set of XSL [107] tools to process and convert the documenting files to any
desirable format. For example, the current Logtalk release includes all the necessary
files to transform documenting XML files into HTML, LATEX2e, and PDF [108] files.
The appendix C contains some XSL transformation files examples.

7.3. Documenting directives 155

7.3 Documenting directives

Logtalk defines two documenting-specific directives for providing arbitrary user-defined
information about an entity and about its predicates. These two directives complement
other Logtalk directives that also provide important documentation information, such
as predicate scope and predicate call modes.

7.3.1 Entity documenting directives

As implied by its name, entity documenting directives are used to represent information
regarding an entity as a whole. Let us first note that, in the context of document-
ing an entity, every entity directive provides relevant information. For example, the
entity opening directive describes the entity type (object, category, or protocol) and
the relationships between the entity and other entities. Logtalk defines also an entity
documenting-specific directive, described next, enabling the representation of common
information such as entity creation and modification dates, entity author, or a short
entity textual description.

The info/1 directive

Arbitrary user-defined entity information can be represented using the directive info/1:

:- info([
Key1 is Value1,
Key2 is Value2,
...]).

In this template, keys must be atoms and values must be ground terms. The following
keys should be considered as predefined and may be processed specially by Logtalk:

comment
Comment describing entity purpose (an atom).

author
Entity author (an atom).

version
Version number (a number, preferably an integer).

date
Date of last modification (formatted as Year/Month/Day).

parnames
Parameter names for parametric entities (a list of atoms).

Of course, we should only use the keywords that make sense for our application, remem-
bering that we are free to invent our own keywords. For example:

:- info([
version is 2.1,
author is ’Paulo Moura’,
date is 2000/4/20,
comment is ’Building representation.’,
diagram is ’UML Class Diagram #312’]).

Here we have used a diagram keyword to refer to some hypothetical class diagram.

156 Chapter 7. Documenting Logtalk programs

Object dependencies

In addiction the relations declared in a category or object-opening directive, the pred-
icate definitions contained in the entity may also imply other dependencies. These can
be documented by using the calls/1 and the uses/1 directives.

The calls/1 directive can be used when a predicate definition sends a message that
is declared in a specific protocol:

:- calls(Protocol).

If a predicate definition sends a message to a specific object, this dependence can be
declared with the uses/1 directive:

:- uses(Object).

These two directives are used by the Logtalk runtime engine to check if all needed entities
are loaded when running an application. They may be also used in a future version to
implement object namespaces.

7.3.2 Predicate documenting directives

Predicate documenting directives are used to represent information regarding a specific
entity predicate. Essential predicate information is provided in the predicate scope and
predicate mode directives. This information can be complemented using the directive
described next.

The info/2 directive

Arbitrary user-defined predicate information can be represented using the directive
info/2:

:- info(Functor/Arity, [
Key1 is Value1,
Key2 is Value2,
...]).

In this template, the first argument identifies the predicate. The second argument is a
list of key-value pairs where keys must be atoms and values must be ground terms. The
following keys and key values are predefined and may be processed specially by Logtalk:

comment
Comment describing predicate purpose (an atom).

argnames
Names of predicate arguments for pretty print output (a list of atoms).

allocation
Objects where we should define the predicate. Some of the possible values are
container, descendants, leafs, instances, classes, subclasses, and any.

redefinition
Describes if and how a predicate can be redefined. Some of the possible values
are never, free, specialize, call super first, call super last.

7.4. Processing and viewing documenting files 157

The possible values for the redefinition and allocation keys deserve further com-
ments.

Regarding the redefinition key, the value never means that the predicate should
not be redefined. The opposite value, free, means that the inherited definition can
be freely overridden. The remaining three values imply that the inherited definition
must be specialized. The more general value, specialize, just specifies that the new
definition must call the inherited definition (using a ^^/2 call). The last two values,
call super first and call super last, specify that the inherited definition must be
called, respectively, either as the first or as the last call in the new definition.

The allocation key describes where a declared predicate should be defined. The
container value means that the predicate is defined in the same object that contains the
predicate declaration. The any value is used when the predicate can be defined in the
object containing the declaration or in any of its descendants. The instances, classes,
and subclasses applies only to class-based hierarchies. The classes value is similar
to the any value, except that the predicate should not be defined in instances, only in
its declaring class and respective sub-classes. The instances and classes values have
similar meanings. The descendants and leafs can be applied to both class-based and
prototype-based hierarchies. The descendants value means that the definition can be
contained in any descendant of the object declaring the predicate, while the leafs value
implies that predicate should only be defined in the descendant leafs of the hierarchy
rooted in the object declaring the predicate.

Note that this set of keys and values cover the most common scenarios. However, we
can always define our own keywords and/or additional keyword values. For example:

:- info(color/1, [
comment is ’Table of defined colors.’,
argnames is [’Color’],
allocation is instances,
constraint is ’At most four visible colors allowed.’]).

Here we have defined a constraint key to express some predicate constraint.

7.4 Processing and viewing documenting files

The actual details of processing and viewing documenting files are necessarily out-of-
scope of the definition of Logtalk as a programming language. Nevertheless, we describe
here briefly the processing flow of documenting files in the current Logtalk implementa-
tion.

As stated before, the XML documenting files are (by default) automatically gener-
ated when we compile a Logtalk entity. For example, assuming the default filename
extensions used by the Logtalk compiler, compiling a list.lgt source file generates a
list.pl Prolog file and a list.xml XML file.

Every XML file contains references to two other files: logtalk.dtd, a DTD file
describing the XML file structure, and a XSLT style sheet file responsible for converting
the XML files to some desirable format such as HTML. The name of the XSLT file
can be changed either system-wide in a configuration file, changed for a duration of
a programming session by setting a compiler flag, or defined in per-file basis using
a compiler option. The default value is lgtxml.xsl, a XSLT file for Web browser

158 Chapter 7. Documenting Logtalk programs

conversion of Logtalk XML files to HTML output whose links point to related XML
files. The HTML output refers a CSS file, logtalk.css, which specifies how the HTML
code will be rendered. For on-line viewing of the XML documenting files, one can open
them on a web browser that supports the XML, XSLT, CSS 1, and HTML 4 standards
or use a XSLT tool to compile the .xml files to .html files. If we want a printed version
of the documentation, we can use one of the supplied XSLT files to convert the XML
code to either PDF or LATEX2e files. One can also write new XSLT files to convert the
XML code to other alternative formats. The appendix C provides further details and
some examples.

Logtalk provides a set of compiler options to control the generation of entity docu-
menting files. These options will be fully described in Chapter 8.

7.5 Summary

Tools such as Lpdoc and some Prolog compilers define documenting directives similar
to the Logtalk directives info/1 and info/2 presented in this chapter. For example,
Lpdoc and ECLiPSe [63] both define a directive named comment/2 that subsumes both
the entity and the predicate Logtalk documenting directives. As in Logtalk, these direc-
tives correspond to no-operational code that is discarded by the compiler after parsing.
Lpdoc, ECLiPSe, and Logtalk share some of the keys used in the respective document-
ing directives, although some Logtalk keys are only meaningful in an object-oriented
context. Documenting directives is a topic where some sort of standardization in the
Prolog community would be useful, enabling the development of cross-compiler docu-
ment extracting and formatting tools. Reaching an agreement should be relatively easy
due to the no-operational feature of the documenting directives.

Regarding documenting file formats, an advantage of the Logtalk solution for the
automatic generation of documenting files is the use of XML to express the documenting
information. This allow us to easily convert the documenting files to any application or
domain specific language, including common online and printing formats such as HTML,
PDF, LATEX2e, or to any other format that proves popular in the near future, such as
the emerging XHTML standard [109]. XML is also an ideal format for information
interchange between systems. Flexibility is the key concept here. The important point
is that the XML files contain only the documenting information, without being cluttered
with any kind of presenting or formatting information. By contrast, Lpdoc generates
Texinfo documenting files, a format that is biased towards the generation of both online
and printing formats from the same source file. In fact, a Texinfo file structure is similar
to LATEX files or traditional books, with chapters and sections. In ECLiPSe, a library
provides the tools needed to generate HTML files from the Prolog source files. Although
we can convert HTML to other formats, this is a final delivery format for online reading,
not an information interchange format.

Another Logtalk advantage over other documenting tools is the design choice of
expressing Logtalk source file documentation in Logtalk itself. There is no need of
using one tool for extracting program documentation and another tool to compile the
source file: there is only one language. Both code compilation and documentation
extraction are performed by the Logtalk compiler. It can be argued that this makes
the compiler more complex because it must perform two functions: code generation
and documentation extraction. However, the compiler only needs to parse one language

7.5. Summary 159

for both documentation and code. This makes an easy task to extract documenting
information from language constructs that are not documenting specific such as predicate
declarations or inheritance relations. I should note that the documenting files may be
further enriched by the programmer with more documenting information using any of
the many available XML editor tools that automatically generates an entry form from
a DTD or a XML Schema specification.

As a final remark, a possible long term solution for the documentation of both Log-
talk and Prolog source files would be to adopt some of the extensive work accomplished
on the Lpdoc tool by extending it to document object-oriented information, using XML
as the documenting file format. However, such task is outside the scope of this thesis
work.

Chapter 8

Implementation

This chapter provides a high-level description of the current Logtalk language imple-
mentation. The implementation consists of a compiler and a runtime engine. These
two components are combined in a single program in order to support the dynamic fea-
tures of Logtalk that allow us to dynamically create and modify objects, protocols, and
categories at runtime.

The implementation solutions described in this chapter are based on the works of
Francis McCabe [23] and Markus Fromherz [52], extended to support the richer set of
object-oriented features of Logtalk.

This chapter begins by describing the design choices made for the current Logtalk
implementation. Secondly, an overview of the implementation is presented. Thirdly,
the compilation of entities, entity relations, entity directives, predicate directives, and
predicate clauses is explained. Fourthly, the runtime engine support for events and
monitors is examined. Next, some of the limitations of the current implementation are
described. Finally, the issues found while porting Logtalk are discussed.

8.1 Design choices

Converting scientific and technical goals into an actual implementation implied a set
of design choices that will be presented in this section. Different choices could have
been made without affecting, in any fundamental way, the specification of the Logtalk
language presented on this thesis. Nevertheless, these design choices have practical
consequences for the language implementation. They determine how the language is
made available, how it is used and for what kinds of applications, and how it integrates
with existing Prolog compilers. These choices represent a set of trade-offs between
performance and flexibility of development and between strengths and limitations.

8.1.1 Logtalk as a Prolog preprocessor

Logtalk, as an extension to Prolog, can be implemented in three different ways, in
increasing degree of difficulty:

Modification of an existing Prolog compiler
Most open source Prolog compilers could easily be extended with a Logtalk im-
plementation. This would provide the best user experience due to the high level

161

162 Chapter 8. Implementation

of integration achieved. However, this would also restrict Logtalk compatibility
to the modified Prolog compiler.

Preprocessor for existing Prolog compilers
Logtalk could also be implemented as a Prolog program that would act as a
preprocessor when loaded. This option would allow users to continue to use
their favorite Prolog compilers. The drawback of this approach would be the
amount of porting work that would need to be performed per Prolog compiler.

Full, independent implementation
Implementing Logtalk from scratch would have the advantage of full control on
the implementation, including its code distribution and use license. However,
this option would also be the most difficult one, as it would imply the imple-
mentation of a full ISO standard compliant Prolog subsystem. Note that in
the first two options, Logtalk can take advantage of the Prolog compiler native
parser to read and parse source files.

One of the Logtalk technical goals is the compatibility with existing Prolog compilers,
the ISO Prolog standard, and operating systems. As such, I chose the second design
option, implementing Logtalk as a Prolog preprocessor. Thus, the current Logtalk
implementation compiles Logtalk source files to Prolog source files, which in turn are
further compiled by a Prolog compiler.

8.1.2 Compatibility and portability

Writing a portable program implies finding a common subset of features of the selected
Prolog compilers. Usually, this means giving up things such as non-basic access to
the operating system, graphical user interfaces, and interfaces with other languages.
Moreover, sometimes we will find ourselves patching compilers, redefining problematic
built-in predicates, and changing predefined operator priority and types. In doing so, our
program may become incompatible with other programs written for the same compiler.

ISO Prolog standard as abstract target

The subset of features chosen is the one specified in the Part I of the ISO Prolog standard.
The major reason for this choice was the quality of the standard documentation. It
provides a detailed specification of Prolog behavior and Prolog built-in predicates that
can be used to write a portable Logtalk implementation. Thus, conformance with the
ISO standard will be the minimal requirement for Prolog compiler compatibility with
Logtalk. Specifically, Logtalk must be able to run feature-complete in any standard-
compliant Prolog compiler. However, conformance here should be understood in a loose
sense, as only a few Prolog compilers comply with the ISO standard fully.

Logtalk configuration files

The interface between Logtalk and a specific compiler is accomplished through a config-
uration file. This is a plain Prolog file that must be loaded before the Logtalk system1.
For standard compliant compilers, the configuration file is minimal containing only some
glue code and utility predicates. For older or less compliant compilers, the configuration
file also contains workaround definitions for missing ISO Prolog standard predicates.

1The Logtalk system includes both the preprocessor and the runtime engine.

8.1. Design choices 163

8.1.3 Dynamic binding

Logtalk uses dynamic binding for message processing. This means that the lookup
searches of both the predicate declaration necessary to validate a message and the pred-
icate definition necessary to answer it are performed at runtime.

8.1.4 Static relations between entities

The entity relations declared in the entity-opening directives are static and cannot be
changed at runtime. This is a common characteristic of most class-based object-oriented
languages. However, some prototype-based languages allow the dynamic reclassification
of objects. Although there is no native support in Logtalk for this feature, it is possible
to implement it using dynamic entities and the built-in reflection methods. This design
choice allows the representation of entity relations to be optimized for predicate lookup
searches. This is critical for good system performance (due to the use of dynamic
binding, predicate lookup searches are performed every time a message is sent).

8.1.5 Independent entity compilation

In the current implementation, all entities (objects, protocols, and categories) are com-
piled independently of other (related) entities. This design choice simplifies the compiler
implementation. This is important for a first implementation that works as a proof-of-
concept for the Logtalk language. In addition, it promotes easy development and de-
bugging, thanks to the interactive and interpreter-like behavior of the Logtalk compiler.
Entity source files can be edited and recompiled without recompilation of any related
entities. However, this design choice has some disadvantages. First, both metapredi-
cate and dynamic predicate directives are not inherited from ancestor objects. Instead,
these directives must be duplicated in any entity that contains clauses for the declared
predicates. Second, this design choice prevents some code optimizations and postpones
the detection of some classes of errors to runtime.

8.1.6 No predefined entities

There are no predefined entities in Logtalk. This design choice was made to ensure that
Logtalk remains an unbiased language. Adding predefined classes would imply adding
equivalent prototypes (in terms of functionality) and vice-versa. This would complicate
the language specification, cluttering it with details that belong to a Logtalk library.
Thus, instead of predefined entities, the Logtalk library contains objects, protocols, and
categories that implement common object-oriented functionality. These entities can
be used as tutorial examples or as a starting point for developing applications. For
example, the library contains objects illustrating instance creation and initialization
methods similar to those found on class-based object-oriented languages.

8.1.7 One entity per source file

Each object, category, or protocol we define must be contained in its own source file. It
would be easy to modify the Logtalk compiler to support compilation of several entities
per source file. However, storing one entity per source file simplifies entity versioning,
workgroup development of applications, and the implementation of “make”-like features
in future compiler versions.

164 Chapter 8. Implementation

8.1.8 Distribution and use license

The current Logtalk implementation is freely available under an open source license
[110]. This open source license has been chosen in order to enable widespread use
(including the use in commercial applications) of the Logtalk language.

There are several reasons for this decision. Firstly, I want to avoid the problems that
have impaired Prolog development and widespread use in the past due to proprietary,
closed, and incompatible implementations. Secondly, this work was possible because
other researchers made available the source code for their systems, allowing me to study
and build on them. Thirdly, open-sourcing code and documentation means that others
more skillful on coding or writing can contribute to improve the quality of the whole
system. Finally, users are allowed to modify the system freely, adapting it to better suit
their needs.

8.2 Implementation overview

This section provides an overview of the current Logtalk implementation, including
a description on how to compile and load source files, as well as an outline of the
compilation process.

8.2.1 Compiling and loading source files

In contrast with the ISO Prolog standard, Logtalk specifies a set of predicates for com-
piling and loading source files. These predicates work with entity file names and with an
optional list of compiler options. An entity file name is the source file name without any
extension or path information. As a consequence, when compiling and loading source
files, the current working directory must be set to the one containing the files. This is a
small price to pay to avoid all the issues with different operating systems using different
conventions for path syntax.

File names

The name of an entity source file is the result of the concatenation of the entity name with
the extension “.lgt”. The Logtalk preprocessor compiles source files to Prolog code files
that use, by default, a “.pl” extension. The documenting file that is also generated (by
default) when compiling a source file, uses the extension “.xml”. Different extensions
can be set in the corresponding Prolog compiler configuration file. As an example,
an object named vehicle should be saved in a vehicle.lgt source file, which will
be compiled to a vehicle.pl Prolog file. The corresponding documenting file will be
named vehicle.xml.

For parametric objects, the source file name should be the result of the concatenation
of the entity name functor with the entity name arity and the extension “.lgt”. For
example, the parametric object sort(Type) should be stored in a source file named
sort1.lgt. This prevents file name clashes when saving Logtalk entities that have the
same name but different arities.

8.2. Implementation overview 165

Compiling source files to disk

The built-in predicate logtalk compile/1 compiles an entity or a list of entities to disk.
For example:

| ?- logtalk_compile(tree).

| ?- logtalk_compile([listp, list]).

The entity compilation will use the current compiler options. The Logtalk preprocessor
will throw an error if it finds a predicate clause or a directive that cannot be parsed. The
default behavior is to report the error and abort the compilation of the offending entity.
If all the terms in a source file are valid, then there is a set of errors or potential errors
that the preprocessor will try to detect and report, depending on the used compiler
options. These will be described below.

Compiling and loading source files to memory

The built-in predicate logtalk load/1 compiles to disk and then loads to memory an
entity or a list of entities.

| ?- logtalk_load(tree).

| ?- logtalk_load([listp, list]).

Compilation and loading will be performed using the current compiler options. When
an entity is already loaded, the new definition replaces the old one in memory. This
behavior is similar to the behavior of the reconsult predicates available in most Prolog
compilers.

8.2.2 Compiler options

The Logtalk compiler supports a set of compilation options (or flags) that allows us to
adapt its behavior to the particular needs of our application development.

The default values for all compiler options (except, of course, read-only options) are
set on the Logtalk configuration files. Their values can be consulted or changed for the
current working section using the Logtalk built-in predicates current logtalk flag/2
and set logtalk flag/2. These predicates are similar to the ISO Prolog predicates
set prolog flag/2 and current prolog flag/2. We can also set specific options when
compiling a set of entities using the Logtalk built-in predicates logtalk compile/2 and
logtalk load/2. A full description of these Logtalk built-in predicates can be found in
the Appendix B.

Documenting options

The following options control the automatic generation of entity documenting files:

xml Controls the automatic generation of documenting files in XML format. Possible
option values are on (the default value) and off.

xsl Sets the XSLT file to be used with the automatically generated XML documenting
files. The default value is lgtxml.xsl.

166 Chapter 8. Implementation

doctype
Sets the DOCTYPE reference in the automatically generated XML documenting files.
The default value is local, that is, the DOCTYPE reference points to a local DTD
file (logtalk.dtd). Other possible values are standalone (no DOCTYPE reference
in the XML documenting files) and web (DOCTYPE reference points to a location in
the Logtalk web site)2.

The option doctype allows us to deal with compatibility issues when parsing a XML
documenting file using a web browser or a dedicated application. Some parsers choke
on the XML DOCTYPE declaration, some only work with local references, while others
work with web references but have problems in locating a local DTD file.

Code generation options

The following two options control the code generated by Logtalk when compiling an
entity:

iso initialization dir
Controls the use of the initialization/1 directive in the Logtalk-generated Pro-
log code. Possible option values are true (if the Prolog compiler supports the ISO
definition of the directive) and false (if the Prolog compiler does not implement
the directive or if the implementation does not conform to the ISO standard).

code prefix
Allows the definition of prefix for all functors of Logtalk-generated Prolog code.
Option value must be an atom. Its default value is ’’.

The second option, code prefix, is useful to solve conflicts between Logtalk-generated
internal functors and user or system functors. It can also be used to take advantage of
the predicate hiding features found in some Prolog compilers. For example, both YAP
[68] and GNU Prolog [111] automatically hide all predicates whose names starts with a
’$’.

Report options

When starting up, the Logtalk compiler outputs information about its version and cur-
rent option values (taken from the used configuration file). During the compilation and
loading of entities, the compiler outputs progress messages and may also output warn-
ings and error messages. Error messages are always written, but the output of all the
other messages and information can be controlled by using the following two options:

startup message
Controls printing of the Logtalk startup banner. Possible option values are on (the
default value) and off.

report
Controls the reporting of each compiled or loaded object, category, or protocol
(including compilation and loading warnings). Possible option values are on (the
default value) and off (silent compilation and loading).

These options are usually turned off when using Logtalk to perform batch processing.
2http://www.logtalk.org/xml/1.0/logtalk.dtd

8.2. Implementation overview 167

Compilation warning options

The following options control the reporting of potential error situations:

unknown
Controls the unknown entity warnings, resulting from loading an entity that ref-
erences some other entity that is not currently loaded. Possible option values are
warning (the default value) and silent.

These warnings may result from either a misspell entity name or just an entity that
it will be loaded next. When using reflective class-based hierarchies (as illustrated in
Chapter 1), it is not possible to define an object load order in such a way that this
warning does not occur. Note that no compiler can detect all references to unknown
entities: references may be constructed at runtime (similar to the construction of a
metacall) or be given as an argument for some predicate.

singletons
Controls the singleton variable warnings. Possible option values are warning (the
default value) and silent (not recommended unless we have already checked our
code and want to avoid false singletons warnings like some Prolog compilers report
for variables that start with an underscore).

named anonymous vars
Toggles the interpretation of variables that start with an underscore as named
anonymous variables. Possible option values are on and off (the default value).

Singleton variables in a clause or a directive are often misspelled variables and, as
such, one of the most common errors in Logtalk and Prolog programming. Often,
programmers replace the anonymous variable by a named anonymous variable, that is,
a variable which starts with an underscore, to improve code readability.

misspelt
Controls the printing of warnings for misspelt calls. Possible option values are
warning (the default value) and silent (not recommended).

This warning will be reported if Logtalk finds (in the body of a predicate definition) a
call to a local predicate that is not defined, is not declared as dynamic, and that does
not correspond to a Prolog or Logtalk built-in predicate. In most cases, these calls are
mere spelling errors.

plredef
Controls the printing of warnings for the redefinition of Prolog built-in predicates.
Possible option values are warning (can be very verbose if our code redefines a lot
of Prolog built-in predicates) and silent (the default value).

Using this option, the Logtalk compiler can be set to warn us of any redefinition of a
Prolog built-in predicate inside an object or a category. Sometimes the redefinition is
intentional. In other cases, we may not be aware that the used Prolog compiler may
already provide the predicate as a built-in one, or we may want to ensure code portability
among several Prolog compilers with different sets of built-in predicates.

168 Chapter 8. Implementation

lgtredef
Controls the printing of warnings for the redefinition of Logtalk built-in predicates.
Possible option values are warning (the default value) and silent.

Similar to the redefinition of Prolog built-in predicates, the Logtalk compiler will warn
us of any redefinition of a Logtalk built-in predicate. The redefinition will probably be
an error in most cases.

Portability options

Some Prolog compilers provide a large number of built-in predicates, most of which are
missing in other Prolog compilers and unspecified in the Prolog ISO standard. When
writing portable Logtalk applications, we can use the following option to warn us of the
use of possible non-portable built-in predicates:

portability
Controls the printing of warnings for calls to non-ISO specified built-in predicates.
Possible option values are warning and silent (the default value).

Whenever possible, we should encapsulate all non-portable code in a small set of objects
with clearly-defined protocols. We can then turn this option off during the compilation
of those objects.

Compilation options

The following option toggles a limited “make”-like feature of the Logtalk compiler:

smart compilation
Controls the use of smart compilation of source files to avoid recompiling files that
remain unchanged since the last time they were compiled. Possible option values
are on and off (the default value).

However, this feature is not supported by all Prolog compilers. Some of them lack an
operating system interface that gives access to a file last modification time. This option
should be turned off when switching Prolog compilers or operating systems in order to
prevent compatibility problems with the Prolog files that result from the compilation of
Logtalk entities.

Other options

The following option can be used by programs that need to check whether some version-
dependent feature is available:

version
Read-only option that stores the current Logtalk version.

Logtalk version numbers use the format major.minor.patch. For example, Logtalk
version 2.15.2 should be read as edition 2, release 15, patch 2. The edition number de-
notes the current generation of the Logtalk language. The release number is incremented
whenever a new feature is implemented or significant changes to existing features are
made. The patch number is incremented when minor fixes are made.

8.3. Identifiers, prefixes, functors, and tables 169

8.2.3 Compiler and runtime error handling

Logtalk error (or exception) handling is performed by using the ISO Prolog predicates
catch/3 and throw/1. All exceptions thrown terms are modeled after the ISO Prolog
standard. The goal is to provide close integration with the standard and to minimize
the learning curve for new Logtalk users with a Prolog programming background.

A complete and detailed description of runtime errors that can result from misuse
of the Logtalk built-in predicates and built-in methods can the found in the Appendix
B.

8.2.4 Parsing and translating source files

Compilation of a Logtalk source file to Prolog code is performed in three steps:

1. The preprocessor opens the source file and reads it, term by term (each term is
either a directive or a clause). With the operator definitions set by the compiler,
all terms of a syntactically correct Logtalk source file are also valid Prolog terms.
These terms are compiled to memory using a set of dynamic predicates for storing
the compilation results.

2. The results of the first step are checked for errors and for calls to any Logtalk or
Prolog built-in predicate that might have been redefined.

3. The compilation result is written to disk as a Prolog code file and all the inter-
mediate compilation predicates are retracted. To load into memory a successfully
compiled entity, this Prolog code file is then compiled and loaded by the chosen
Prolog compiler.

The following sections will describe in detail the compilation of entities, entity rela-
tions, entity directives, predicate directives, and predicate clauses.

8.3 Identifiers, prefixes, functors, and tables

The implementation of Logtalk as a preprocessor, which compiles Logtalk code to Pro-
log code, implies that we must construct new identifiers and functors to represent the
compiled code. The basic idea is to construct a prefix from an entity identifier, and then
to use this prefix to construct all the internal functors needed to represent the compiled
entity. Entity prefixes are accessed through entity tables that map entity identifiers to
entity prefixes. Entity prefixes are then used to access the internal functors used in
all bookkeeping tables, including the tables of declared and defined predicates, of each
entity.

In order to make our description on compiling objects, categories and protocols more
clear, we will use the following example object in the next sections:

:- object(stack).

:- public(top/1).
:- public(push/1).
:- public(pop/1).
:- public(empty/0).

170 Chapter 8. Implementation

:- public(map/3).
:- metapredicate(map(*, ::, *)).

:- private(stack_/1).
:- dynamic(stack_/1).

top(Top) :-
...

:- end_object.

8.3.1 Entity prefix

The entity identifier is used to construct an atom, the entity prefix, which will be used
as a prefix for all functors we need when compiling the entity. This prefix is the result of
the concatenation of the entity functor with the entity arity followed by an underscore.
For example, if we are compiling an object named stack, then the corresponding prefix
will be the atom stack0 . Because all entities share the same namespace, all identifiers
must be unique and, consequently, by construction, all prefixes and thus all derived
functors will also be unique. Note that it is always possible, but unlikely, that a user
predicate will conflict with a predicate generated by Logtalk when compiling an entity.
Logtalk supports a compiler option (named code prefix) for setting an arbitrary prefix
to all functors generated when compiling an entity. An alternative solution will be a
portable mechanism for hiding private system predicates, similar to those found in some
Prolog compilers.

8.3.2 Entity tables

The runtime engine maintains a set of tables mapping entity identifiers to the corre-
sponding prefixes. These tables are not strictly necessary but they do avoid the per-
formance penalties of repeatedly constructing prefixes when processing messages. For
objects, we use the following table:

lgt_current_object_(Object, Prefix, Dcl, Def, Super).

Each table entry contains the entity identifier, the entity prefix, and three additional
arguments, which are cached functors that will be described later. These functors are
the most used ones when processing a message. They are cached in this table in order to
improve message sending performance. For our example object stack, the corresponding
table entry will be:

lgt_current_object_(stack,
stack0_, stack0__dcl, stack0__def, stack0__super).

For protocols and categories, we use the following two tables:

lgt_current_protocol_(Protocol, Prefix).

lgt_current_category_(Category, Prefix).

8.3. Identifiers, prefixes, functors, and tables 171

By convention, a Logtalk compiler functor ending with an underscore denotes a dynamic
predicate. When an entity is compiled and loaded, an entry is added to the corresponding
table. Conversely, abolishing an entity removes the corresponding table entry.

8.3.3 Predicate tables

What information do we need to represent when compiling an entity? First, we need
to represent each predicate declaration. Thus, the compiled code will contain a table of
all predicate declarations. The functor of this table is the result of the concatenation
of the entity prefix with the atom dcl (interpreted as an abbreviation of the word
“declaration”). Therefore, for our example object stack, we will have the table:

stack0__dcl(...).

Second, for entities that may contain predicate definitions, we need a way to go from
an entity identifier plus a predicate term to the compiled predicate term. The table
representing the mapping from user predicate names to the corresponding compiled
names uses a functor constructed by appending the entity prefix to the atom def (for
definition):

stack0__def(...).

Not all predicate declarations and definitions exist at the time of entity compilation.
Logtalk objects support the dynamic declaration and definition of predicates. Dynam-
ically declared predicates can be abolished at runtime, unlike predicates declared at
compilation time3. For this purpose we use two additional tables whose functors result
from appending the entity prefix to the atoms ddcl (for dynamic declarations) and
ddef (for dynamic definitions):

stack0__ddcl(...).

stack0__ddef(...).

Runtime use of these four tables implies the construction of the corresponding call using
the ISO Prolog built-in predicate =../2. When processing a message, we must first
check its validity against the predicate declaration tables, and then find a predicate
declaration to answer it using the predicate definition tables. However, by design, and
in order to improve performance, only two such calls need to be constructed per message.
The details of these tables will be further discussed in the next section.

8.3.4 Linking clauses

Next, we need to represent inheritance relations so that we can perform efficient lookups
of both predicate declarations and predicate definitions. This is accomplished by gen-
erating linking clauses that connect an entity declaration and definition tables with the
corresponding entity ancestor tables. The meaning of an entity ancestor depends on
whether we are compiling objects, categories, or protocols. Moreover, in the case of

3Note that the concept of dynamic predicate declaration is orthogonal to the concept of dynamic
predicate. Predicates declared in an entity source file are statically declared and cannot be abolished,
even if some of them are declared as dynamic. In the case of a source file containing a definition for a
dynamic entity, its predicates can only be abolished by abolishing the entity itself.

172 Chapter 8. Implementation

objects, it depends on whether we are compiling prototypes, instances, or classes. Note
that, for any compiled entity, the linking clauses connecting to the local predicate tables
are always generated, even for stand-alone entities.

All linking clauses are static as a consequence of the design choice that entity relations
are static properties, not updatable at runtime. How these linking clauses are generated
will be discussed later on this chapter.

8.3.5 Entity functors clause

How do we go from an entity identifier to each functor? First, we use the entity tables
that map entity identifiers to entity prefixes. Then we use a single clause predicate, the
entity functors clause, whose functor is the entity prefix, which contains all the functors
as arguments. For objects, this clause has the following format:

Prefix(Dcl, Def, Super, IDcl, IDef, DDcl, DDef).

The clause arguments are the functors described previously in this section. For our
example object stack the functors clause will be:

stack0_(stack0__dcl, stack0__def,
stack0__super,
stack0__idcl, stack0__idef,
stack0__ddcl, stack0__ddef).

For categories, we need only two functors, one for predicate declarations, and another
for predicate definitions:

Prefix(Dcl, Def).

For protocols, taking into account that they can only contain predicate declarations, we
need only one functor:

Prefix(Dcl).

In theory, runtime use of these clauses would imply the construction of the correspond-
ing call using the ISO Prolog built-in predicate =../2. However, in order to improve
performance, the most used functors in message processing are cached in the object
identifier table.

8.4 Compiling predicate directives

As explained before on this chapter, when compiling entity predicate directives, Logtalk
constructs a static table of predicate declarations. At runtime, new predicate declara-
tions can be asserted into an object, resulting in a dynamic table of predicate declara-
tions. Note that when we talk about a static or dynamic table of predicate declarations
we are talking about the table itself, not about static or dynamic predicates. Only the
scope, dynamic, and metapredicate directives are used in the construction of these pred-
icate declaration tables. Discontiguous predicate directives are compiled by generating
the equivalent Prolog directives for the compiled predicates. Predicate documenting
directives are only used in the automatic generation of documenting files.

8.4. Compiling predicate directives 173

8.4.1 Static table of predicate declarations

Each entity contains a table of all predicates declared at compilation time, the static
table of predicate declarations. For each predicate, a table entry with the following
format is generated:

Dcl(Pred, Scope, Type, Meta).

The value of each argument comes from the scope, dynamic, and metapredicate direc-
tives describing the predicate. The value of the first argument, Pred, is a predicate term
(Functor(...)), not a predicate indicator (Functor/Arity), for performance reasons.
The second argument, Scope, represents the predicate scope using one of the following
terms:

p(p(p))
public predicate

p(p)
protected predicate

p
private predicate

This representation allows checking for public or protected predicates with a single
unification call: the term p() unifies with both the terms representing public scope
and protected scope. This check needs to be performed every time a message to self is
processed.

The value of the third argument, Type, can either be the atom static or the atom
dynamic. All predicates are static unless explicitly declared dynamic.

The value of the last argument, Meta, can either be the atom no (meaning that the
predicate is not a meta-predicate) or a meta-predicate term. For the example object
stack the clauses generated for the declared predicates will be:

stack0__dcl(top(_), p(p(p)), static, no).
stack0__dcl(push(_), p(p(p)), static, no).
stack0__dcl(pop(_), p(p(p)), static, no).
stack0__dcl(empty, p(p(p)), static, no).
stack0__dcl(map(_,_,_), p(p(p)), static, map(*, ::, *)).
stack0__dcl(stack_(_), p, dynamic, no).

If there are no (local) predicate declarations, then the following catchall clause is gen-
erated:

Dcl(_, _, _, _) :-
fail.

This clause ensures that there will be no unknown predicate runtime errors when looking
up a predicate declaration.

8.4.2 Dynamic table of predicate declarations

A second predicate declaration table is used for predicates that are dynamically declared
at runtime (by asserting a clause for them into an object). This table is a short version

174 Chapter 8. Implementation

of the static table of predicate declarations described in the previous section but uses a
different functor:

DDcl(Pred, Scope).

The value of the second argument, Scope, depends on the object receiving the asserting
message, as explained in Chapter 3. Note that there is no need for a Type argument,
as the predicates are always dynamic. In addition, since Logtalk does not support the
dynamic declaration of metapredicates, the fourth argument of the static table, Meta, is
not necessary. For example, the message:

| ?- stack::assertz(foo(1)).

would result in the following table entry:

stack0__ddcl(foo(_), p(p(p))).

This table is declared as a dynamic predicate, so there is no need for a catchall clause
in order to prevent errors when there are no table entries.

8.5 Compiling predicate clauses

Compilation of predicate clauses is performed in two stages. In the first stage, all
predicate clauses are compiled one by one. Each predicate clause is compiled by first
compiling its head and then its body. In the second stage, we update the compiled
clauses to reflect any redefined built-in predicate. Definite clause grammar rules are
first converted to predicate clauses and then compiled as any other clause.

8.5.1 Compiling clause heads

Clause heads are compiled by constructing a new internal functor from the predicate
functor and by appending three extra arguments that are used for context information
passing.

Predicate prefix

The predicate internal functor is constructed by concatenating the entity prefix with the
predicate prefix. The predicate prefix is the result of the concatenation of the predicate
functor with the predicate arity. For example, for the predicate top/1, declared in the
object stack, the internal predicate functor will be stack0 top1.

Execution context

The compiled clause heads contain three extra arguments, appended to the existing
ones; these arguments are used at runtime to pass the execution context. For example,
the predicate top/1 mentioned above will be translated to the following clause:

stack0_top1(Top, Sender, This, Self) :-
...

8.5. Compiling predicate clauses 175

The context arguments are instantiated at runtime, when a clause is selected to answer
a message. The first context argument, Sender, is instantiated with the sender of the
message. The second context argument, This, is instantiated with the entity containing
the predicate definition. The third context argument, Self, is instantiated with the
object that has received the message. Note that, by adding the context arguments after
the existing ones, we preserve any use of first-argument indexing the programmer might
have employed to optimize predicate calls.

8.5.2 Predicate definition tables

As explained before, Logtalk constructs a static table of predicate definitions when
compiling entity predicate clauses. At runtime, new predicate clauses can be asserted
into an object for predicates that are not defined at the time of the object compilation,
resulting in a dynamic table of predicate definitions.

Static table of predicate definitions

Compiling an object or a category generates a static table of predicate definitions. This
table maps the user predicate names to the internal ones for all predicates that are
defined at compilation time. The table entry template is:

Def(Pred, Sender, This, Self, Call).

The first argument is a predicate term, not a predicate indicator. For the example
above, the corresponding table entry will be:

stack0__def(top(Stack, Top), Sender, This, Self,
stack0_top2(Stack, Top, Sender, This, Self)).

In the case of objects, a table entry is also generated for each contained dynamic predi-
cate directive, even if the object contains no clauses for the corresponding predicates at
compilation time. Note that clauses for dynamic predicates can always be asserted at
runtime.

For categories that do not contain any predicate definitions, and for objects that do
not contain either predicate definitions or dynamic predicate directives, the following
catchall clause is generated:

Def(_, _, _, _, _) :-
fail.

This clause ensures that there will be no unknown predicate runtime errors when looking
up a predicate definition. Assume, for example, that an object imports a category
that does not contain any predicate definitions. Nevertheless, there will be a linking
clause enabling the object to search for predicate definitions inside the category. This
linking clause is always generated because the category may be later updated by adding
predicate definitions, thus updating the importing object without recompiling it.

Dynamic table of predicate definitions

There is a second predicate definition table, the dynamic table of predicate definitions,
which is used for definitions of predicates that are dynamically declared (by asserting a

176 Chapter 8. Implementation

clause for them into an object) or whose declarations are inherited from another entity
(in this case, the predicates must have been declared dynamic). This table is generated
and updated at runtime. It is similar to the static table of predicate definitions described
in the previous section but uses a different functor:

DDef(Pred, Sender, This, Self, Call).

The table entry arguments have the same meaning as the arguments of the table de-
scribed in the previous section. This table is declared as a dynamic predicate, so there
is no need for a catchall clause in order to prevent errors when there are no defined table
entries.

Note that this table exists only for objects (we cannot assert new predicate definitions
in a category: categories can only contain static predicates and, as such, only need a
static table predicate definitions).

8.5.3 Compiling clause bodies

A clause body is compiled by compiling its goals. The goals can be arguments of control
constructs, calls to Prolog and Logtalk built-in predicates, local predicates, message
sending calls, and metacalls. As an object or category may redefine both Prolog and
Logtalk built-in predicates, all clauses containing a call to a redefined built-in predicate
are compiled such that the new definition will be called instead of the predefined one.

The compilation is performed in three stages. First, each call in the clause body is
compiled as described below. Second, the result of the first stage is updated to apply any
redefinition of built-in predicates. Third, the compiled body is simplified by removing
any redundant calls to the built-in predicate true.

Compiling built-in metapredicate calls

Calls to Prolog and Logtalk built-in metapredicates are compiled by first compiling
the corresponding metacalls and then by compiling the metapredicate call as any other
built-in predicate, as explained below.

Compiling built-in predicate calls

Calls to Logtalk built-in predicates are translated into calls to the Logtalk internal
predicates implementing them. Calls to Prolog built-in predicates are copied without
any further processing.

Compiling built-in method calls

Calls to the built-in message execution context methods are translated by unifying the
method argument with the corresponding context information argument in the extended
clause head. Thus, as the unification is performed at compilation time, the runtime
performance cost of these methods is null.

Calls to other Logtalk built-in methods are translated into calls to the Logtalk in-
ternal predicates that implement them.

8.6. Compiling entity relations 177

Compiling message sending calls

Logtalk design choice of dynamic binding for message processing greatly simplifies the
compilation of message sending calls. The preprocessor first checks, if possible, whether
the target object and the message are valid. Then, it translates the call to a call of the
internal predicate that implements the runtime message processing.

Compiling metacalls

When compiling a metapredicate, all arguments in the clause head that are metavariables
are collected into a list that is used in the compilation of the clause body. The list of
metavariables is constructed from the corresponding metapredicate directive. When
compiling the clause body, the argument of each metacall is checked against the list of
metavariables. When the metacall argument is a metavariable, the metacall is compiled
so that it is executed in the context of the sender ; otherwise it is compiled so that it is
executed in the context of this.

Compiling local predicate calls

Calls to locally defined predicates are simply compiled by translating the call into a call
to the internal form of the predicate.

8.6 Compiling entity relations

Now that I have described how predicate directives and predicate clauses are compiled,
I need to detail how the relations between entities are compiled. As explained before,
the basic idea is to generate a set of linking clauses that will connect the predicate
declaration and definition tables of an entity to the same tables in the related entities.
These clauses make use of the same functors of the predicate declaration and definition
tables, with one or two extra arguments appended at the end of the clause heads. These
extra arguments are used to return the entity containing the inherited declaration or
the inherited definition. They are necessary to check scope validity and to support the
Logtalk built-in reflection method predicate property/2.

Linking clauses ordering

We need to establish suitable orderings for entity linking clauses in order to solve conflicts
between inherited predicate declarations and inherited predicate definitions.

Protocols When a protocol extends other protocols, the order of the linking clauses
for this relation is the same as the order of the extended protocols in the protocol-opening
directive.

Categories When a category implements some protocols, the order of the linking
clauses for this relation is the same as the order of the implemented protocols in the
category-opening directive.

178 Chapter 8. Implementation

Prototypes A prototype may implement one or more protocols, import one or more
categories, and extend one or more prototypes. The ordering of linking clauses, for each
relation type, is the same as the order of the entities in the object-opening directive.
Considering the ordering of the linking clauses between relation types, we have: first,
implemented protocols; second, imported categories; third, extended objects.

Instances/classes Non-prototype objects (i.e. instances or classes) may implement
one or more protocols, import one or more categories, instantiate one or more classes,
and specialize one or more classes. The ordering of linking clauses, for each relation type,
is the same as the order of the entities in the object-opening directive. For the ordering
of the linking clauses between relation types, we have: first, implemented protocols;
second, imported categories; third, relations with other objects.

Scope container versus true container

For objects, we need to make a distinction, when inheriting predicate declarations, be-
tween the scope container and the true container. This distinction is necessary due to
the semantics of protocols and categories. If an object implements (imports) a predicate
declaration from a protocol (category), the true container will be the protocol (category),
but the scope container will be the object implementing (importing) the protocol (cat-
egory). The scope container, as its name suggests, is used to check scope constraints
when processing messages, while the true container is returned by the built-in reflection
method predicate property/2.

8.6.1 Compiling protocol relations

Protocols may either be stand-alone entities or be defined as extensions of other proto-
cols.

Protocols contain predicate declarations (but not predicate definitions) that can
be implemented by any object or category. The predicate called when looking up a
predicate declaration uses the same functor as the predicate declaration table but with
an additional argument used to return the protocol containing the declaration. The first
linking clause connects to the local table of predicate declarations:

Dcl(Pred, Scope, Type, Meta, Protocol) :-
Dcl(Pred, Scope, Type, Meta).

Next, we have a linking clause for each extended protocol with the format:

Dcl(Pred, Scope, Type, Meta, Container) :-
ExtPtcDcl(Pred, Scope, Type, Meta, Container).

The order of these clauses is the same as the order of the extended protocols in the
protocol-opening directive.

As an example, a protocol-opening directive such as:

:- protocol(extd_listp,
extends(basic_listp)).

results in the following set of linking clauses:

8.6. Compiling entity relations 179

extd_listp0__dcl(Pred, Scope, Type, Meta, extd_listp) :-
extd_listp0__dcl(Pred, Scope, Type, Meta).

extd_listp0__dcl(Pred, Scope, Type, Meta, Container) :-
basic_listp0__dcl(Pred, Scope, Type, Meta, Container).

8.6.2 Compiling category relations

Categories may either be stand-alone entities or implement one or more protocols.
Categories contain predicate declarations and definitions that can be imported by

any number of objects. Since protocols can only contain predicate declarations, we only
need linking clauses connecting a category predicate declaration table to the tables in
each implemented protocol. A category cannot inherit predicate definitions from other
entities. Category linking clauses are thus similar to protocol linking clauses.

The first linking clause connects a category to its local predicate declaration table:

Dcl(Pred, Scope, Type, Meta, Category) :-
Dcl(Pred, Scope, Type, Meta).

After this clause, we will have a linking clause for each implemented protocol:

Dcl(Pred, Scope, Type, Meta, Container) :-
PtcDcl(Pred, Scope, Type, Meta, Container).

The order of these clauses is the same as the order of the implemented protocols decla-
ration in the category-opening directive.

As an example, a category-opening directive such as:

:- category(category,
implements(protocol)).

results in the following set of linking clauses:

category0__dcl(Pred, Scope, Type, Meta, category) :-
category0__dcl(Pred, Scope, Type, Meta).

category0__dcl(Pred, Scope, Type, Meta, Container) :-
protocol0__dcl(Pred, Scope, Type, Meta, Container).

8.6.3 Compiling prototype relations

A prototype can be a stand-alone entity or it may extend other prototypes, implement
some protocols, or import some categories. Therefore, compiling a predicate results
in two sets of linking clauses: one set for predicate declarations and another set for
predicate definitions.

Linking clauses for predicate declarations

A predicate declaration may be local, contained in an implemented protocol, contained
in an imported category, or found in some ancestor object. Therefore, the first two

180 Chapter 8. Implementation

linking clauses connect to the local (static and dynamic) predicate declaration tables:

Dcl(Pred, Scope, Type, Meta, Object, Object) :-
Dcl(Pred, Scope, Type, Meta).

Dcl(Pred, Scope, (dynamic), no, Object, Object) :-
DDcl(Pred, Scope).

Second, we have a linking clause for each (if any) implemented protocol:

Dcl(Pred, Scope, Type, Meta, Object, TrueCtn) :-
ProtocolDcl(Pred, Scope, Type, Meta, TrueCtn).

Third, we have a linking clause for each (if any) imported category:

Dcl(Pred, Scope, Type, Meta, Object, TrueCtn) :-
CategoryDcl(Pred, Scope, Type, Meta, TrueCtn).

Finally, we have a linking clause for each (if any) extended (parent) prototype:

Dcl(Pred, Scope, Type, Meta, ScopeCtn, TrueCtn) :-
ParentDcl(Pred, Scope, Type, Meta, ScopeCtn, TrueCtn).

The order of these clauses is the same as the order of the extended objects in the
object-opening directive.

As an example, an object-opening directive such as:

:- object(proto,
implements(protocol),
imports(category),
extends(parent)).

results in the following set of linking clauses for predicate declarations:

proto0__dcl(Pred, Scope, Type, Meta, proto, proto) :-
proto0__dcl(Pred, Scope, Type, Meta).

proto0__dcl(Pred, Scope, dynamic, no, proto, proto) :-
proto0__ddcl(Pred, Scope).

proto0__dcl(Pred, Scope, Type, Meta, proto, TrueCtn) :-
protocol0__dcl(Pred, Scope, Type, Meta, TrueCtn).

proto0__dcl(Pred, Scope, Type, Meta, proto, TrueCtn) :-
category0__dcl(Pred, Scope, Type, Meta, TrueCtn).

proto0__dcl(Pred, Scope, Type, Meta, ScopeCtn, TrueCtn) :-
parent0__dcl(Pred, Scope, Type, Meta, ScopeCtn, TrueCtn).

Thus, the simplicity of prototype hierarchies translates into a simple set of linking
clauses. As we will see in the next section, the linking clauses for classes and instances
are significantly more complex due to the distinction between instantiation and special-
ization relations.

8.6. Compiling entity relations 181

Linking clauses for predicate definitions

A predicate definition may be local, imported from a category, or found in some ancestor
object. Thus, the linking clauses for predicate definitions are similar to the linking
clauses for predicate declarations described above. The first two clauses for the definition
lookup predicate provide access to the local predicate definition tables:

Def(Pred, Sender, This, Self, Call, Object) :-
Def(Pred, Sender, This, Self, Call).

Def(Pred, Sender, This, Self, Call, Object) :-
DDef(Pred, Sender, This, Self, Call).

Next, we have a linking clause for each imported category:

Def(Pred, Sender, Object, Self, Call, Category) :-
CategoryDef(Pred, Sender, Object, Self, Call).

Finally, we have a linking clause for each parent prototype:

Def(Pred, Sender, Object, Self, Call, Container) :-
ParentDef(Pred, Sender, Parent, Self, Call, Container).

For the object-opening directive presented above, the linking clauses will be:

proto0__def(Pred, Sender, This, Self, Call, proto) :-
proto0__def(Pred, Sender, This, Self, Call).

proto0__def(Pred, Sender, This, Self, Call, proto) :-
proto0__ddef(Pred, Sender, This, Self, Call).

proto0__def(Pred, Sender, This, Self, Call, category) :-
category0__def(Pred, Sender, This, Self, Call).

proto0__def(Pred, Sender, Object, Self, Call, Container) :-
parent0__def(Pred, Sender, Object, Self, Call, Container).

Once again, the simplicity of prototype hierarchies translates into a simple set of linking
clauses.

Linking clauses for super calls

Whenever we execute a super call, the lookup procedure for the predicate definition
uses a set of linking clauses that uses a functor constructed by concatenating the entity
prefix with the atom super.

When compiling a root prototype, that is, a prototype that does not extend other
prototypes, the following catchall clause is generated in order to prevent “predicate not
found” errors at runtime:

Super(_, _, _, _, _, _) :-
fail.

182 Chapter 8. Implementation

If our prototype extends other prototypes, then we generate a linking clause for each
extended prototype:

Super(Pred, Sender, Object, Self, Call, Container) :-
ParentDef(Pred, Sender, Parent, Self, Call, Container).

The order of these clauses is the same as the order of the parents in the prototype-
opening directive.

For our example, the linking clause will be:

proto0__super(Pred, Sender, proto, Self, Call, Container) :-
parent0__def(Pred, Sender, parent, Self, Call, Container).

8.6.4 Compiling instantiation and specialization relations

An object may instantiate one or more classes, and may also be instantiated by other
objects. At the same time, an object may also implement some protocols, import some
categories and specialize some objects (that will play the role of superclasses), or be
specialized by other objects (that will play the role of subclasses).

For predicate declarations, the lookup always starts at the instance classes. However,
for predicate definitions, the lookup starts at the instance itself and then, if it fails,
proceeds to the instance classes and then to the class superclasses. We also need linking
clauses to represent the transitive nature of the specialization relation. These transitive
clauses use two functors constructed by concatenating an entity prefix with the atoms
idcl (for inherited declarations) and idef (for inherited definitions).

Linking clauses for predicate declarations

For an instance, the linking clauses for predicate declarations simply redirect the lookup
of declarations to the instance classes. That is, we will have a linking clause for each
instantiated class:

Dcl(Pred, Scope, Type, Meta, ScopeCtn, TrueCtn) :-
ClassIDcl(Pred, Scope, Type, Meta, ScopeCtn, TrueCtn).

If an object does not instantiates any class, then a catchall clause is generated:

Dcl(_, _, _, _, _, _) :-
fail.

An object can also play the role of a class, by being instantiated or specialized by other
objects. When looking up predicate declarations in an object (playing the role of a
class) coming from a descendant object, we use a set of linking clauses using the IDcl
functor. The first two clauses connect to the local tables of predicate declarations:

IDcl(Pred, Scope, Type, Meta, Object, Object) :-
Dcl(Pred, Scope, Type, Meta).

IDcl(Pred, Scope, (dynamic), no, Object, Object) :-
DDcl(Pred, Scope).

Second, we have a linking clause for each implemented protocol:

8.6. Compiling entity relations 183

IDcl(Pred, Scope, Type, Meta, Object, TrueCtn) :-
ProtocolDcl(Pred, Scope, Type, Meta, TrueCtn).

Third, we have a linking clause for each imported category:

IDcl(Pred, Scope, Type, Meta, Object, TrueCtn) :-
CategoryDcl(Pred, Scope, Type, Meta, TrueCtn).

Last, we have a linking clause for each specialized class:

IDcl(Pred, Scope, Type, Meta, ScopeCtn, TrueCtn) :-
SuperclassIDcl(Pred, Scope, Type, Meta, ScopeCtn, TrueCtn).

As an example, an object-opening directive such as:

:- object(class,
implements(protocol),
imports(category),
instantiates(meta),
specializes(super)).

results in the following set of linking clauses for predicate declarations:

class0__dcl(Pred, Scope, Type, Meta, ScopeCtn, TrueCtn) :-
meta0__idcl(Pred, Scope, Type, Meta, ScopeCtn, TrueCtn).

class0__idcl(Pred, Scope, Type, Meta, class, class) :-
class0__dcl(Pred, Scope, Type, Meta).

class0__idcl(Pred, Scope, dynamic, no, class, class) :-
class0__ddcl(Pred, Scope).

class0__idcl(Pred, Scope, Type, Meta, class, TrueCtn) :-
protocol0__dcl(Pred, Scope, Type, Meta, TrueCtn).

class0__idcl(Pred, Scope, Type, Meta, class, TrueCtn) :-
category0__dcl(Pred, Scope, Type, Meta, TrueCtn).

class0__idcl(Pred, Scope, Type, Meta, ScopeCtn, TrueCtn) :-
super0__idcl(Pred, Scope, Type, Meta, ScopeCtn, TrueCtn).

Linking clauses for predicate definitions

A predicate definition can be local, imported from a category, or inherited from one of
the instance classes. Therefore, first we have two clauses connecting to the local tables
of predicate definitions:

Def(Pred, Sender, This, Self, Call, Object) :-
Def(Pred, Sender, This, Self, Call).

Def(Pred, Sender, This, Self, Call, Object) :-
DDef(Pred, Sender, This, Self, Call).

184 Chapter 8. Implementation

Next, we have a linking clause for each imported category:

Def(Pred, Sender, Object, Self, Call, Category) :-
CategoryDef(Pred, Sender, Object, Self, Call).

Finally, we have a linking clause for each instantiated class:

Def(Pred, Sender, Object, Self, Call, Container) :-
ClassIDef(Pred, Sender, Class, Self, Call, Container).

When looking up predicate definitions in an object (playing the role of a class) coming
from a descendant object we use a set of linking clauses using the IDef functor. The
first two clauses connect to the local tables of predicate definitions:

IDef(Pred, Sender, This, Self, Call, Object) :-
Def(Pred, Sender, This, Self, Call).

IDef(Pred, Sender, This, Self, Call, Object) :-
DDef(Pred, Sender, This, Self, Call).

Next, we have a linking clause for each imported category:

IDef(Pred, Sender, Object, Self, Call, Category) :-
CategoryDef(Pred, Sender, Object, Self, Call).

Finally, we have a linking clause for each specialized class:

IDef(Pred, Sender, Class, Self, Call, Container) :-
SuperclassIDef(Pred, Sender, Super, Self, Call, Container).

Note that, although the set of linking clauses for the Def functor is similar to the set of
clauses for the IDef functor, there is a crucial difference: when we send a message to an
object, the search for a predicate definition starts at the object itself and then (if not
found) it proceeds to the object classes. When we search an object playing the role of
a class for a predicate definition, the search continues at the class superclasses, not at
the class metaclasses.

For our object-opening directive example, the linking clauses will be:

class0__def(Pred, Sender, This, Self, Call, class) :-
class0__def(Pred, Sender, This, Self, Call).

class0__def(Pred, Sender, This, Self, Call, class) :-
class0__ddef(Pred, Sender, This, Self, Call).

class0__def(Pred, Sender, class, Self, Call, category) :-
category0__def(Pred, Sender, class, Self, Call).

class0__def(Pred, Sender, class, Self, Call, Container) :-
meta0__idef(Pred, Sender, meta, Self, Call, Container).

class0__idef(Pred, Sender, This, Self, Call, class) :-
class0__def(Pred, Sender, This, Self, Call).

8.6. Compiling entity relations 185

class0__idef(Pred, Sender, This, Self, Call, class) :-
class0__ddef(Pred, Sender, This, Self, Call).

class0__idef(Pred, Sender, class, Self, Call, category) :-
category0__def(Pred, Sender, class, Self, Call).

class0__idef(Pred, Sender, class, Self, Call, Container) :-
super0__idef(Pred, Sender, super, Self, Call, Container).

Linking clauses for super calls

In class-based hierarchies, a predicate defined in a class can be specialized both in the
descendant subclasses and in the descendant instances. In the first case, the following
linking clause will be generated:

Super(Pred, Sender, Class, Self, Call, Container) :-
SuperclassIDef(Pred, Sender, Super, Self, Call, Container).

In the second case, the linking clause will be:

Super(Pred, Sender, Object, Object, Call, Container) :-
ClassIDef(Pred, Sender, Class, Object, Call, Container).

For our example, the linking clauses will be:

class0__super(Pred, Sender, class, class, Call, Container) :-
meta0__idef(Pred, Sender, meta, class, Call, Container).

class0__super(Pred, Sender, class, Self, Call, Container) :-
super0__idef(Pred, Sender, super, Self, Call, Container).

At first glance, the clauses above seem to imply that, when an object both instantiates
and specializes other objects, a super call would result in a search along two inheritance
links. However, note that the first clause will only be used if the value of the This
argument is the same as the Self argument, allowing us to distinguish between an
instance specialized method and a subclass specialized method. One problem of this
solution is that a backtracking choice point will be always created when processing a
super call. However, the choice point will be removed before calling the specialized
definition.

8.6.5 Compiling protected and private relations

All linking clauses described so far have assumed a public relation between entities. As
explained in previous chapters, Logtalk also supports protected and private relations.
All relation types can be qualified using the keywords protected and private. The
linking clauses for protected and private relations are derived from the public relation
clauses by ensuring the conversion of the scope of inherited predicates.

186 Chapter 8. Implementation

Protocol extension relations

For a protected relation, all public predicates of the extended protocol will be inherited
as protected. Protected and private predicates will retain their scope. The format for
the linking clause will be:

Dcl1(Pred, Scope, Type, Meta, Object, Container) :-
Dcl2(Pred, Scope2, Type, Meta, Container),
(Scope2 == p -> Scope = p; Scope = p(p)).

Note that the test in the conditional goal uses the Prolog comparison predicate ==/2,
instead of the unification predicate =/2. This enables optimization of the conditional
call in several Prolog compilers.

For a private relation, the corresponding linking clause will be simpler as all predi-
cates of the extended protocol will be inherited as private:

Dcl1(Pred, p, Type, Meta, Obj, Container) :-
Dcl2(Pred, _, Type, Meta, Container).

As an example, given a protocol-opening directive such as:

:- protocol(icecream,
extends(private::vanilla, protected::chocolate)).

the following two linking clauses will be generated:

icecream0__dcl(Pred, p, Type, Meta, Container) :-
vanilla0__dcl(Pred, _, Type, Meta, Container).

icecream0__dcl(Pred, Scope, Type, Meta, Container) :-
chocolate0__dcl(Pred, Scope2, Type, Meta, Container),
(Scope2 == p -> Scope = p; Scope = p(p)).

Note that a protocol hierarchy is always transparent for an object implementing it. The
example above will work in the same way as if we collect all predicate declarations of
the three protocols (icecream, vanilla, and chocolate) into a single protocol.

Implementation and importation relations

The linking clauses for protocol implementation and category importation are similar to
the protocol extension clauses presented above. For example, an object-opening directive
such as:

:- object(root,
implements(private::protocol),
imports(protected::category)).

will result in the following two linking clauses:

root0__dcl(Pred, p, Type, Meta, root, Container) :-
protocol0__dcl(Pred, _, Type, Meta, Container).

root0__dcl(Pred, Scope, Type, Meta, root, Container) :-
category0__dcl(Pred, Scope2, Type, Meta, Container),
(Scope2 == p -> Scope = p; Scope = p(p)).

8.7. Runtime support for events and monitors 187

As always, the scope container is the object implementing the protocol or importing the
category.

Extension, instantiation, and specialization relations

For extension, instantiation, and specialization relations, the linking clauses must take
into account the distinction between the scope container and the true container of the
inherited predicates.

The linking clause for a protected inheritance is similar to the linking clause for other
relations:

Dcl1(Pred, Scope, Type, Meta, ScopeCtn, TrueCtn) :-
Dcl2(Pred, Scope2, Type, Meta, ScopeCtn, TrueCtn),
(Scope2 == p -> Scope = p; Scope = p(p)).

However, the linking clause for private inheritance is more complex than for the linking
clauses for public and protected relations:

Dcl1(Pred, p, Type, Meta, ScopeCtn, TrueCtn) :-
Dcl2(Pred, Scope2, Type, Meta, ScopeCtn2, TrueCtn),
(Scope2 == p -> ScopeCtn = ScopeCtn2; ScopeCtn = Object1).

The conditional call is required for two reasons. First, it ensures that inherited public
and protected predicates will act as private predicates for the object performing the
private inheritance. Second, it prevents ancestor private predicates from being called
from the descendant object. As an example, for an object-opening directive such as:

:- object(proto,
extends(private::parent)).

the following linking clause will be generated:

proto0__dcl(Pred, p, Type, Meta, ScopeCtn, TrueCtn) :-
parent0__dcl(Pred, Scope2, Type, Meta, ScopeCtn2, TrueCtn),
(Scope2 == p -> ScopeCtn = ScopeCtn2; ScopeCtn = proto).

For public and protected predicates declared in the parent prototype, parent, the scope
is set to private and the scope container is set to the object inheriting the predicates,
proto. Thus, when checking scope rules, those predicates will act as private predicates
declared in the object proto. For private predicates, in order not to break object
encapsulation, the scope container is passed unchanged.

8.7 Runtime support for events and monitors

In Logtalk, for each message sent using the ::/2 control construct, the runtime engine
must check if the corresponding events are being monitored. Therefore, the performance
of this check is crucial to the performance of the whole system. Ideally, event checking
should be performed in constant time and independently of the number of spied events.
This is essential to ensure that the existence of monitored objects does not affect the
processing of messages sent to the remaining objects. This performance goal can be
attained on Prolog compilers which support first argument indexing for dynamic code.

188 Chapter 8. Implementation

On these compilers, the event representation takes advantage of first argument indexing
to ensure that — in general case — event checking is performed in constant time.

The Logtalk runtime engine uses two dynamic tables for storing events and the
corresponding monitors. The structure of these tables is as follows:

lgt_before_(Object, Message, Sender, Monitor, Call)

lgt_after_(Object, Message, Sender, Monitor, Call)

The first table stores before events while the second stores after events. These tables are
accessed and updated by the event handling built-in predicates described in Chapter 6.

The last argument of each table entry, Call, contains the goal that will be called when
a spied event occurs. This goal is constructed by the built-in predicate define events/5.
The goal functor is generated from the monitor identifier and the event handler method
(before/3 for before events and after/3 for after events) in the same way as any other
object predicate functor.

Assume, for example, then we want the object spy to be alerted every time the
message go/1 is exchanged between any two objects:

| ?- define_events(after, _, go(_), _, spy).

This call will generate the following table entry:

lgt_after_(Object, go(_), Sender, spy,
spy0_after3(Object, go(_), Sender, spy, spy, spy)).

Note that the values of the sender, this, and self contextual information are all set to
the monitor name. This is the expected value for this and self. However, there is no
suitable value for sender, as the goal will be called directly by the message processing
mechanism. Nevertheless, this raises no problems as the sender of the spied message is
one of the arguments of the event handler method.

8.8 Limitations

This section describes two sets of limitations of the current Logtalk implementation:
Prolog-related limitations and operating system-related limitations.

8.8.1 Prolog-related limitations

Most Prolog compilers implement different solutions for problems that are outside the
scope of the current ISO Prolog standard. This results in limitations to the Logtalk
implementation, which must remain compatible with most Prolog compilers.

Reloading entities

Interactive development of an application is characterized by frequent editing and reload-
ing of source files. Ideally, reloading an entity would replace the old definition in memory.
Since the Logtalk preprocessor compiles an entity source file to Prolog code, the resulting
file will be compiled and loaded by calling the selected Prolog compiler. The ISO Prolog
standard defines the syntax and semantics of compliant Prolog source code, but clas-
sifies the compilation and loading of programs as implementation-dependent features.

8.8. Limitations 189

Fortunately, most compilers match the standard specification of compliant Prolog text.
Mainly, all code is assumed static except for explicitly declared dynamic predicates.
In addition, most compilers provide a reconsult-like built-in predicate that will replace
old definitions when loading new clauses for an existing predicate. However, not all
reconsult predicates behave as expected, particularly regarding dynamic predicates. For
example, in some Prolog compilers, reloading a file containing directives for dynamic
predicates does not remove from memory any existing clauses for those predicates.

Recompiling entities

Compiling and loading an application should only imply recompilation of source files that
have been modified since the last time. This basic feature is implemented by accessing
and comparing file modification dates. However, some Prolog compilers provide no
support for retrieving file properties, making this feature compiler-dependent (controlled
by a compiler option described earlier on this chapter) instead of a standard Logtalk
feature.

Reporting syntax errors

The current version of the Logtalk preprocessor relies on the ISO Prolog specified pred-
icate read term/3 for compiling an entity source file. One consequence of this is that
invalid Prolog terms or syntax errors may abort the compilation process with limited
information given to the user. In some Prolog compilers, this predicate reports useful
information such as the source file line number where a syntax error occurred, but there
is no agreed format for the error term. Since the predicate read term/3 can be used
to read terms from sources other than files, this limitation results from our use of the
predicate and not from a weakness of the ISO Prolog standard. A possible solution to
this problem would be for Logtalk to implement its own parser instead of relying on the
Prolog compiler.

Message sending operators

The message sending operators used by Logtalk, ::/1-2 and ^^/1, although compatible
with the set of predefined operators specified in the ISO Prolog standard, may conflict
with the operator definitions of some Prolog compilers. For example, some compilers
include constraint-solving extensions that use the operator ::/2 for declaring the do-
mains of constraint variables. A plausible solution would be the definition, within the
ISO standard, of hook operators and predicates for common Prolog extensions such as
constraints and objects. As an example, note that the ISO standard already specifies
a curly bracketed term notation ({}/1) and a predefined operator (-->/2) that can be
used as hooks for implementing Definite Clause Grammars4.

8.8.2 Operating system-related limitations

Some of the limitations of the current Logtalk version are a consequence of the goal of
making our implementation portable across different operating systems. Trivial things

4In Logtalk, the curly bracketed notation is used as a control construct for bypassing the preprocessor
during the compilation of entities.

190 Chapter 8. Implementation

such as valid file names, file path specifications, or end-of-lines in source files, differ from
one operating system to another.

Parametric object file names

Sometimes, parametric objects have names whose corresponding file names are not valid
in some operating systems. For example, consider the objects in the symbolic deriva-
tion and simplification example presented in Chapter 1. For the object Op1*Op2, the
corresponding file name will be *2.lgt. This is an invalid file name in some operating
systems that use the character “*” in regular expressions in order to match file names.
Other similar examples will be parametric objects named Op1/Op2 or Op1:Op2. The cor-
responding file names, respectively, /2.lgt and :2.lgt, are invalid in some operating
systems that use the characters “/” and “:” as path separators.

A closely related issue is the compatibility of the file names with the regular ex-
pressions used in shell scripts (for example, the scripts included in the current imple-
mentation, which automate tasks such as converting XML documenting files to other
formats).

These problems will eventually be solved when operating systems evolve to support
less restrictive file naming.

Source file end-of-lines

Different operating systems use different characters for text file end-of-lines. When
distributing source code, we need to convert the end-of-lines in the source files to comply
with the target operating system; otherwise some Prolog compilers will fail to compile
them, sometimes without any error message. Due to the use of full stops in Prolog as
clause terminators, this was an unexpected problem. Fortunately, tools are available to
easily batch convert whole directories of text files between different line endings.

8.9 Porting

The current Logtalk implementation comprises 320 predicates, amounting to 176 KB
of Prolog code. Porting Logtalk to a specific Prolog compiler implies writing the corre-
sponding configuration file. For many Prolog compilers, this was more problematic than
anticipated. In the end, more time was spent on porting Logtalk than on writing the
system itself. This section describes the results of trying to port Logtalk to thirty-seven
versions of twenty-six Prolog compilers running on several flavors of Unix, Apple, and
Microsoft operating systems.

8.9.1 Porting results

The most recent versions of eleven Prolog compilers broadly comply with the ISO Pro-
log standard. Four of these compilers are open source projects. Three are commercial
products. Four other compilers are freely available, being three of them closed-source
projects. Writing the configuration files for these compilers was an easy task to accom-
plish.

For two other Prolog compilers, the missing ISO Prolog predicates necessary for
Logtalk were easy to replace. For the remaining compilers, the configuration files contain

8.9. Porting 191

workaround definitions for ISO Prolog predicates. These workarounds allow Logtalk to
run some simple examples, but prevent its use for any serious work. One problem
with the current preprocessor implementation of Logtalk is that, on occasion, Prolog
compiler bugs have a negative impact on the perception of the quality of Logtalk itself,
particularly if the compiler that the user is running is a commercial product.

In the end, working configuration files were written for thirty-one versions of twenty
Prolog compilers. Six of the initial target compilers could not be supported due to their
failure to implement or emulate basic ISO Prolog standard predicates. Four compiler
versions need patches that cannot be applied using the configuration files. In addition,
six compiler versions have buggy input/output predicates that imply editing of both
Logtalk source files and Logtalk produced Prolog code files to workaround compatibility
problems. Writing the configuration files for these compilers was a difficult and time-
consuming task.

8.9.2 Porting reliability

Effective use of Logtalk in real-world problems implies evaluating the reliability of the
selected Prolog port. For the current implementation, this depends on the quality of the
corresponding configuration file and on the conformance of the selected Prolog compiler
with the ISO standard. Thus, discussing port reliability is meaningful only to those
Prolog compilers that comply broadly with the (now eight years old) standard.

Writing a quality configuration file depends on the quality of the documentation of
the selected Prolog compiler. Quality documentation implies complete reference man-
uals, detailed release notes, and lists of known issues and bugs. Even when the doc-
umentation provides all necessary information, it is sometimes difficult to make any
definitive statements about Logtalk compatibility for some of the supported compilers.
Some configuration files are written using documentation available on-line, without any
actual testing, due to lack of access to a copy of the corresponding Prolog compiler.
Other configuration files are tested with only one of the operating systems supported
by the Prolog compiler. Experience has shown that some bugs are platform-specific,
and so, each Logtalk port would need to be tested in every supported operating system.
Unfortunately, this is was not feasible for some compilers, in particular for commercial
ones, due to lack of resources.

The ISO Prolog standard makes it possible to construct a suite of conformance tests
against which a Prolog compiler could be evaluated [112, 113]. This is essential to
ensure that a portable program, such as the current Logtalk implementation, runs as
expected under a specific compiler, or that any differences in behavior are predictable.
Unfortunately, judging from the number of bugs found during Logtalk development,
testing compilers conformance is not a common practice among most Prolog vendors
yet. The ideal solution would be the implementation of a conformance and certification
process by an independent third-party entity. Until that happens, determining a port
reliability would imply first certifying the standard conformance of the selected Prolog
compiler, something that is out of the scope of this thesis work. Nevertheless, according
to the users reports and to my own experience (that includes using Logtalk to teach
object-oriented programming to undergraduate students), the reliability of the most
commonly used ports is excellent.

192 Chapter 8. Implementation

8.9.3 Porting issues

The following notes detail some of the porting issues found while writing configuration
files for compilers that deviate significantly from the ISO Prolog standard. These include
some commercial systems that publicize their participation on the standardization pro-
cess. The motivation for these ports was to allow any Prolog user to try out the Logtalk
language using any available compiler.

Exception handling

Logtalk uses extensively the ISO Prolog predicates catch/3 and throw/1 for exception
handling. Some compilers provide weak support, if any, for handling runtime exceptions.
Definitions such as:

catch(Goal, _, _) :-
call(Goal).

throw(Error) :-
writeq(Error),
abort.

allow some Logtalk examples to run, but are very limited workarounds. The nature of
these predicates precludes functional user definitions for them.

A second problem will be whether we want to use exception handling only for our
program-specific runtime errors or if we need to rely upon standard behavior for built-in
predicates. For example, consider the predicate arg/3. In some Prolog compilers the
following call:

| ?- arg(-1, Term, Arg).

will fail silently. In other compilers, the call will throw an exception. Unfortunately,
this exception is not always the one specified by ISO Prolog standard for this case. If
our code depends on arg/3 throwing the correct exception in such erroneous cases, then
we will have to write some workaround definition such as:

my_arg(N, Term, Arg) :-
N < 0 ->

throw(error(domain_error(not_less_than_zero, N)))
;
arg(N, Term, Arg).

Applying this solution to all problematic built-ins, for all the possible exceptions, may
result in a significant performance overhead to our programs.

A third problem was found on compilers that handle undefined predicates (that is,
predicates with no clauses) as unknown predicates (ignoring dynamic, discontiguous,
and multifile directives). If dummy definitions are not possible, this may force us to set
the default action of the unknown predicate handler to fail for erroneous calls, losing a
valuable aid in finding misspell predicate calls.

8.9. Porting 193

Input/output

Logtalk uses stream-based input/output predicates. Compilers that do not provide such
predicates usually include the old Edinburgh set of input/output predicates. For those,
a possible workaround will be to write definitions such as:

open(Stream, write, Stream) :-
telling(Current),
tell(Stream),
tell(Current).

read_term(Stream, Term, _) :-
seeing(Current),
see(Stream),
read(Term),
see(Current).

With a little more work, we can also implement some necessary read and write options.
For example:

write_term(Stream, Term, Options) :-
telling(Current),
tell(Stream),
(member(quoted(true), Options) ->

writeq(Term)
;
write(Term)),

tell(Current).

However, these are very incomplete and fragile workarounds.

Operators

The current Logtalk implementation assumes that its declared operators remain active
(once the Logtalk preprocessor and runtime files are loaded) until the end of the Prolog
session. This is the usual behavior of most Prolog compilers. However, operators are a
common source of portability problems.

Predefined operators Some compilers declare atoms such as public, dynamic, or
mode as operators. To avoid syntax errors, all occurrences of these atoms are written
between parenthesis in the current Logtalk implementation. However, parsing errors
may also result from differences in precedence and/or type of common operators. Most
compilers allow the redefinition of built-in operators, but this may clash with other
programs that the user may want to run concurrently.

Operators and input/output predicates One particularly nasty problem found in
some compilers is that predicates such as writeq/1 writes code that the built-in read/1
predicate fails to parse correctly. While sometimes we get a parsing error, in other cases
the code that is read back is not the same as that we have written. One instance of this

194 Chapter 8. Implementation

problem, which was found in four Prolog compilers (both commercial and academic),
happens when writing a term that uses the negation operator. Goals such as:

writeq(\+ (a, b, c))

may output:

\+(a, b, c)

omitting the necessary whitespace character between the operator and the parenthesis.
Because \+ is a valid functor and there is no \+/3 predicate, this may create elusive
bugs in our programs. Sometimes the above goal outputs correct code, but a call such
as:

write(\+ \+ (a, b, c))

may incorrectly output:

\+ \+(a, b, c)

The double negation is a construct commonly used to check if a goal is true without
instantiating any free variables. The only (cumbersome) workaround may be to test
every term we write and, if needed, write the operator first, then a space, and finally
the operand.

Minimizing the use of operators The ISO Prolog standard defines a predicate
named write canonical/1 that is intended for writing code that must be read back.
This predicate outputs terms without using operator notation and quoting them if ne-
cessary. Logtalk uses this predicate for writing the Prolog code files that result from
the compilation of Logtalk source files. However, until recently, some Prolog compilers
provided no implementation for this predicate.

Theoretically, the output from any Prolog compiler produced with the predicate
write canonical/1 should be the same. In practice, this does not always happen. For
example, a goal such as:

..., write_canonical(dynamic), ...

will output the atom dynamic between parenthesis in some compilers (usually, because
this atom is declared as an operator) but not in others. As consequence, depending on
the used Prolog compiler, the current Logtalk implementation may generate Prolog code
files that will not be portable across all Prolog compilers. In addition, some compilers
have buggy implementations of the predicate write canonical/1 where the code that
is written cannot be parsed by the compilers own predicates for compiling and loading
Prolog code.

Access to the operating system

Predicates for retrieving system time, system date, and timing information are available
on most Prolog compilers. In respect to file system access, most Prolog compilers de-
fine predicates for testing if a file exists and for changing the current working directory.
Some commercial systems (and also a few academic ones) provide very good operating
system interfaces. However, the limited operating system access of most Prolog compil-
ers prevents the widespread implementation of useful development features, as already
discussed on this chapter.

8.9. Porting 195

Built-in predicates

When selecting the set of built-in predicates, shared by a set of compilers, in order to
write a portable program, two kinds of problems may arise:

1. Equivalent built-ins with different names.

2. Built-in predicates with the same name but different call modes, different argument
types, or different behavior in case of invalid calls.

Defining our own predicate to call the equivalent built-in predicate in each Prolog com-
piler easily solves the first problem. In Logtalk, an example of this is the predicate used
to check if a file exists in the current working directory.

The second problem may also be solved by defining our own predicate. This may re-
sult in performance penalties, depending on the complexity of the workaround definition
and on how often it is called by our program. Some compilers allow the redefinition of
built-in predicates. This may provide a better solution if the problem only occurs with
some of the target compilers. However, we must be aware that this may cause incompat-
ibilities with other programs (or even with the compiler itself) that may rely on the re-
placed definitions. A common example is the built-in predicate predicate property/2,
which is provided by most Prolog compilers for retrieving predicate properties. The
problem is that different compilers may return different atoms to represent the same
properties. For instance, for a static predicate, some compilers return the atom static,
while others return the atom compiled. The same happens for dynamic predicates:
some compilers return the atom dynamic, while others return the atom interpreted.

Database updates

The ISO standard defines a logical view for database updates. In this view, the database
is frozen while a goal is executed. Any database update will only affect the next goals.
However, some Prolog compilers still use immediate update semantics where any assert
or retract call may affect the goal under execution. For programs that make use of
dynamic code, compilers implementing different database update semantics may lead to
different results for some goals. This should not affect the porting of the current Logtalk
implementation per se but may affect the portability of Logtalk programs. Careful use
of database update predicates as explained, for example, in [114], can help to avoid these
potential problems.

Documentation and developer support

Some of the problems described above could be minimized with better compiler doc-
umentation, including a summary of the differences between a Prolog implementation
and the ISO standard. Lists of known issues and bugs are essential for avoiding long
debugging sessions caused not by bugs in our code but by compiler-related problems.
In the development of Logtalk, I have contributed to uncover several problems, both in
commercial and academic Prolog compilers. It is interesting to note that, while academic
systems are patched within a few days, sometimes within a few hours (with gratitude
for the bug reports from its authors), a few support teams of commercial systems either
refuse to acknowledge the problems (“it’s not a bug, it’s a feature”; not documented
of course, but still a feature!) or had harsh reactions to bug reports (including stop
replying email messages).

196 Chapter 8. Implementation

8.10 Summary

This chapter described solutions for implementing several object-oriented features not
found in other Prolog object-oriented extensions. These include: public, protected, and
private predicates; public, protected, and private inheritance; separation of interface
from implementation using protocols; code reuse through categories; and support for
both prototypes and classes in the same application.

The current implementation fully implements all the Logtalk language features as
described and specified on this thesis. In addition, the technical goal of ensuring com-
patibility with most Prolog compilers has been achieved. However, the reliability of
some ports is weak due to the lack of standard conformance, good documentation, and
access to Prolog compiler copies for testing.

A substantial number of Prolog compilers and compiler versions currently supported
by Logtalk are no longer maintained by its authors. Furthermore, some commercial
compilers still do not support basic ISO Prolog standard functionality such as exception
handling and stream-based input/output predicates. Future Logtalk versions will no
longer support those Prolog compilers. This will make porting and maintenance much
easier. It will also allow adding new features (that need Prolog support only available
in recent compilers) to the Logtalk compiler.

Most limitations of the current implementation could be solved by a closer integra-
tion with a suitable Prolog compiler. A good candidate would be a standard-compliant
compiler, available under an open source license, compatible with most operating sys-
tems, with a good operating system interface, and with either no module system or
with a module system implementation that could be easily removed. Preliminary ex-
periments with GNU Prolog [111] have shown the feasibility of this solution. Thus, a
complete implementation that would not need any supporting Prolog compiler could
also be provided. However, this approach would not work for Logtalk users who use
libraries and features only available on specific Prolog systems. Those users would be
limited to use the preprocessor version of Logtalk.

Conclusions

This chapter presents the most relevant contributions of this thesis, some supplementary
considerations on Logtalk support for reflection and on using Logtalk in the classroom,
as well as the planned future development of the Logtalk language. Complete and more
detailed conclusions about each language feature of are provided in the end of each
chapter.

Logtalk can be described as a multi-paradigm language that supports logic program-
ming, object-oriented programming, and event-driven programming. However, Logtalk
goal was not to only support these programming paradigms but to integrate them. The
integration was made by, first, reinterpreting object concepts in the context of logic pro-
gramming and, second, by reinterpreting event concepts in the context of object-oriented
programming.

This chapter begins by evaluating Logtalk as a Prolog object-oriented extension
and as an interpreted, interactive object-oriented programming language. Secondly, the
relevance of event-driven programming in the context of object-oriented languages is
described. Thirdly, category-based composition, and its support for component-based
programming, is summarized. Fourthly, Logtalk native support for reflection is exam-
ined. Then, the Logtalk support for automatic program documentation is presented.
Next, the experience of using Logtalk in the classroom is described, followed by some
data on the Logtalk distribution numbers. Finally, the roadmap for future development
is presented.

Logtalk as a Prolog object-oriented extension

Logtalk reinterprets the concept of object as a set of predicate directives (declarations)
and clauses (definitions). Thus, message sending is reinterpreted as proof construction
using the predicates defined for the receiving object. Inheritance mechanisms allow us
to define the complete database of an object. A method is then simply the predicate
definition selected from an object complete database in order to answer a message. By
reinterpreting the concepts of object, message, and method in logic programming terms,
a simple mapping is established between Logtalk semantics and the familiar Prolog
semantics.

In general terms, this reinterpretation of object concepts is shared by most Prolog
object-oriented extensions. To evaluate and compare Logtalk with other object-oriented
extensions and Prolog module systems, the following criteria will be used: compatibility
with Prolog compilers, language syntax, interpretation of the concept of object, feature
set, and working environment.

197

198 Conclusions

Logtalk compatibility

Logtalk is the only Prolog object-oriented extension available today that has been de-
signed from scratch for compatibility with most compilers and with the ISO Prolog
standard. This design goal sets it apart from other Prolog extensions. The preprocessor
solution adopted for the Logtalk implementation allows it to run on most computers
and operating systems for which a modern Prolog compiler is available. Specifically, the
current Logtalk version is compatible with thirty-one versions of twenty Prolog compil-
ers.

Logtalk syntax

Logtalk uses, whenever possible, standard Prolog syntax, and defines elegant language
constructs, in line with the current practice and expectations of Prolog programmers.
This helps to smooth the learning curve for Prolog programmers. This is more than a
syntactic sugar issue. For example, Logtalk enables existing Prolog code to be encapsu-
lated in objects without any changes. Only when a predicate needs to call other object
predicates, would minimal changes be required. Thus, easy conversion of old Prolog
programs is ensured.

The role of objects in logic programming

The primary purpose of objects in Logtalk is the encapsulation and reusing of code,
thus decoupling this functionality from the theoretical issues of dynamic state change in
logic programming. As such, Logtalk provides a practical view, rather than a theoretical
view, of the role of objects in logic programming in general, and in Prolog in particular.
By focusing on the encapsulation and code reuse proprieties of objects, Logtalk aims to
be an effective tool for solving software engineering problems in Prolog programming.

Implementation solutions for object-oriented concepts

Logtalk shows how to implement the main object-oriented concepts in Prolog. These
include concepts not found individually on most Prolog object-oriented extensions such
as: support for both classes and prototypes; metaclasses; protocols and protocol hier-
archies; public, protected, and private predicates; and public, protected, and private
inheritance. Thus, Logtalk is likely one of the most complete Prolog object-oriented ex-
tension available today. In addition, Logtalk shows how to implement other important
concepts that are not available on other object-oriented languages, such as categories
and event-driven programming. Unlike other object-oriented extensions that are either
proprietary or depend heavily on the specifics of the native module systems, Logtalk
implementation solutions are fully compatible with any compiler that complies with the
Part I of the ISO Prolog standard.

Objects as a replacement for modules

Logtalk objects provide an alternative to the use of Prolog modules, either as imple-
mented in most Prolog compilers or as specified in the Part II of the ISO Prolog standard.
Like Prolog modules, Logtalk prototypes can be defined as stand-alone encapsulation
entities. In addition, although Logtalk does not provide a direct replacement for module
import and export directives, the extension relation between prototypes, together with

Logtalk as a Prolog object-oriented extension 199

protocol implementation and category importation relations, allows equivalent function-
ality. Logtalk objects have several important advantages over Prolog modules:

• Logtalk predicate scope directives ensure data hiding, a missing feature in the ISO
standard for Prolog modules.

Logtalk message sending mechanism, built-in methods, and built-in predicates enforce
predicate scope directives. The ISO standard specifies that any module predicate can
be called using explicit module qualification; it considers that mechanisms to enforce
data hiding are implementation-dependent features.

• Separation between interface and implementation.

Unlike module interfaces, Logtalk protocols can be implemented by any number of
objects. Conversely, an object may implement several protocols.

• Compatibility with existing Prolog compilers.

Logtalk is compatible with almost all modern Prolog compilers. The ISO standard for
Prolog modules is still to being adopted by most Prolog vendors, in part because of
differences with existing and widely used module systems.

• The ISO standard specifies two incompatible ways of declaring metapredicates.
No such nuisances exist in Logtalk.

Some things cannot be specified within a standard and must be considered as implemen-
tation-dependent features. The syntax for declaring metapredicates is clearly not one
of them.

• Logtalk provides a number of valuable features in the development of large-scale
projects, which are outside the scope of module systems.

These include predicate reuse and specialization through inheritance and composition,
event-driven programming, reflection, and automatic generation of documentation.

Working environment and other practical matters

Logtalk working environment is limited to the subset of common features of the compat-
ible Prolog compilers. For example, there is no common set of predicates for operating
system access (so restricting the functionality of the Logtalk compiler) or a common stan-
dard for constructing graphical user interfaces. Proprietary object-oriented extensions,
developed to work with a single Prolog compiler, are able to provide a richer working
environment, taking advantage of unique features of a compiler and its hosting operat-
ing system. Nevertheless, within its compatibility restrictions, Logtalk tries to provide a
learning and working environment similar to other Prolog compilers and object-oriented
extensions that use text-based development tools. For editing source files, the current
Logtalk distribution includes syntax-coloring configuration files for popular text editors,
along with text templates for defining new entities and entity predicates. This improves
the programming experience, particularly by helping to avoid syntax errors when writing
entity and predicate directives. Also included are a number of programming examples
and extensive documentation, which comprises a user manual, a reference manual, and
programming tutorials.

200 Conclusions

Outside the academic world, these practical matters are as important as the technical
features and scientific achievements of the language itself. As such, they are fundamental
in building a user community, who will use the Logtalk language as a tool to solve real
problems.

Logtalk as an object-oriented programming language

Logtalk extends Prolog, in the same way as CLOS extends LISP or Objective-C extends
C. As a programming language in its own right, Logtalk shares features with common
object-oriented languages. However, there are also some important differences because
of its Prolog roots. The most significant one is that Logtalk eliminates some dichotomies
deeply established on most object-oriented languages. These dichotomies are often used
as a way of characterizing and classifying object-oriented languages. Specifically, Logtalk
makes no distinction between variables and methods, allows most language elements to
be either dynamic or static, and integrates classes and prototypes in the same language.
Despite the first two points are common to some Prolog object-oriented extensions, they
are worth summarizing here. Unlike Logtalk, almost all object-oriented languages are
strictly defined as either class-based or prototype-based languages. Most of them are
characterized by a clear distinction between variables and methods, what is static and
what is dynamic, and what must be achieved at compile time or can be performed at
runtime.

Predicates as both variables and methods

Logtalk object predicates unify the concepts of object methods and object variables,
therefore simplifying the language semantics. Predicates remove the dichotomy between
state and behavior: a predicate simply states what is true about an object. Predicates
may be used to implement both variables and methods, but such a distinction is always
optional. It follows that we no longer need separate definition, inheritance, and scope
rules for state and behavior. In addition, both state and behavior can be easily shared
along inheritance links or defined locally. This allows us, for example, to define methods
in instances and to share object state easily among descendant objects without the need
of first formalizing concepts such as shared instance variables.

Static and dynamic language elements

Logtalk objects, protocols, categories, and predicates can be either dynamic or static.
Predicates may be asserted into, and abolished from both static and dynamic objects
at runtime. Objects, protocols, and categories can be defined either in a source file
or created dynamically at runtime. If contained in a source file, they can be defined
as either static or dynamic entities. As such, we are not constrained, for example, to
define classes as static entities and instances as runtime-only objects. We may define an
instance in a source file in the same way as a class may be defined. This is consistent
with Logtalk primary view of objects as encapsulation units.

Support for both prototypes and classes

Logtalk is a neutral, unbiased language, supporting both prototype-based and class-
based programming. We can use both types of objects at the same time and freely

Event-driven programming 201

exchange messages between them. Logtalk classes, instances, and prototypes are sim-
ply objects — encapsulation entities — characterized by different rulesets for accessing
their own predicates and for reusing predicates inherited from other objects. Classes and
prototypes share the same built-in predicates for creating, abolishing, and enumerating
objects. In addition, they share the same built-in methods for dynamic object modifi-
cation and the message sending mechanisms. Moreover, protocols can be implemented,
and categories can be imported, by prototypes, classes, and instances.

As a neutral language, Logtalk enables the definition and coexistence in the same
application of several types of object systems, all of them supported in an equal basis.
Class-based designs may define a single object hierarchy, as in Smalltalk and Java, or
multiple, independent hierarchies as in C++. In addition, one may choose to imple-
ment reflective systems through metaclasses or simply use classes as instance factories.
Multiple hierarchies of prototypes are also supported, of course. Both class and proto-
type hierarchies may use only single inheritance or take advantage of multi-inheritance
support. This flexibility is an important asset when using Logtalk for teaching object-
oriented programming.

Event-driven programming

Logtalk provides a conceptual integration of event-driven programming into the object-
oriented programming paradigm. The key for this integration is the interpretation of
message sending as the only event that occurs in an object-oriented program. Thus,
Logtalk reinterprets the concepts of event, monitor, event notification, and event handler
in terms of objects, messages, and methods. This allows us to stay within the object-
oriented programming paradigm when writing event-driven programming code.

Two important results emerge from Logtalk programming practice in using events
to implement complex dependency relations between objects. These results are not
specific to Logtalk. Instead, they apply to most object-oriented programming languages.
First, event-driven programming is an essential feature of object-oriented languages
for achieving a high level of object cohesion and avoiding unnecessary object coupling
on applications where object relations imply constraints on the state of participating
objects. Dependency mechanisms, as found in Smalltalk and in other languages, provide
only a partial solution, which can only be used when object methods contain — or can
be modified to contain — calls to the dependency mechanism methods. Second, events
and monitors must be supported as language primitives, integrated with the message
sending mechanisms. This is an essential requirement from a performance point of view,
which precludes the implementation of event-driven programming at the application
layer or through language libraries. Native language support is fundamental in making
event-driven programming an effective tool for problem solving.

Category-based composition

Categories are the basis of component-based programming in Logtalk. Categories pro-
vide finer, functionaly-cohesive units of code that can be imported by any object. Thus,
categories play a role dual to that one played by protocols for interface encapsula-
tion. In addition, categories provide several development benefits such as incremental
compilation, updating an object — without recompiling it — by updating its imported

202 Conclusions

categories, and refactoring of complex objects into more manageable and reusable parts.
Category-based composition, inheritance, and instance variable-based composition

provide complementary forms of code reuse. Categories implement a composition mech-
anism where a category interface becomes part of the interface of an object importing
it. This is unlike instance variable-based composition, but similar to what happens
with inheritance. Logtalk support for public, protected, and private category impor-
tation provides further flexibility. By applying the principles of separation of concerns
common to component-based programming approaches, categories provide alternative
solutions to multi-inheritance designs that can be applied in the context of single inher-
itance languages.

The concept of category has no dependencies on Logtalk-specific features. Categories
are compiled using similar techniques to those applied to the compilation of objects and
object hierarchies, with some features requiring the use of dynamic binding. As such,
categories can be implemented in other object-oriented languages in order to add support
for component-based programming.

Reflection

Logtalk inherits Prolog metaprogramming features, which are a form of reflection. In
addition, Logtalk provides a framework for reflective computations supporting both
structural and behavioral reflection. While reflection is usually provided by reification
of language constructs, Logtalk supports reflection through built-in language features
such as built-in predicates, built-in methods, and runtime mechanisms, which are not
written in Logtalk itself. This implies that some Logtalk features, such as the message
sending mechanism or the inheritance algorithms, are fixed and cannot be tailored by
the programmer. On the other hand, this enables Logtalk reflection support to be fully
optimized for runtime performance.

Logtalk supports structural reflection through a set of built-in methods for enumer-
ating object predicates and their properties, and a set of built-in predicates for enu-
merating entities (objects, protocols, and categories), their properties, and the relations
between them. All reflection built-in predicates and built-in methods can be applied to
prototypes, instances, and classes.

Logtalk supports behavioral reflection through event-driven programming. There-
fore, behavioral reflection is restricted to computations about the messages exchanged
between objects. Nevertheless, events enable easy construction of common reflective
applications such as code profilers and debuggers.

Logtalk also supports reflection through the definition of metaclasses. Any class
may have its own metaclass as in Smalltalk or share its metaclass with other classes.
Metaclasses may be defined for all classes or just for some of them. Thus, any class-based
design with metaclasses is supported.

Program documentation

Logtalk emphasis on the documentation of programs has its roots on literate program-
ming concepts. Logtalk support for program documentation differs from most program-
ming languages in four key points:

• Documenting files are automatically generated whenever an entity is compiled.

Logtalk in the classroom 203

Logtalk uses a single tool — its compiler — to both compile code and extract docu-
mentation. By writing some simple scripts (examples of which come with the current
implementation), collecting and processing documenting files can be fully automated.

• The documenting files are XML compliant files. These files contain all information
on an entity that might have relevant documentation meaning, including entity
relations and entity predicates.

The XML format allows us to represent documenting information without concerning
ourselves on how it will be used. XML documenting files can be easily converted to any
human-readable format such as PDF (for printing) or HTML (for on-line reading). In
addition, XML documenting files may also be parsed for other useful purposes such as
collecting program metrics.

• The structure of the documenting files is an integral part of the language specifi-
cation, along with documenting directives for entities and entity predicates.

Thus, in Logtalk, program documentation is viewed as a fundamental part of the lan-
guage specification.

• All documenting information is expressed in the Logtalk language itself. There
is no additional, specific documenting language that needs to be mastered before
programs can be documented.

Logtalk documenting directives are user-extensible. This allows programmers to eas-
ily express documenting information that cannot be deduced from the program itself.
This differs from typical literate programming solutions, which use specially formatted
comments for documenting programs.

Logtalk in the classroom

Logtalk is being used at UBI (University of Beira —nterior) to teach object-oriented
programming and object-oriented extensions to logic programming to undergraduate
students. Teaching object-oriented concepts using Logtalk has provided interesting re-
sults. Common object-oriented languages such as C++ and Java are class-based. These
languages inherit syntax and concepts from imperative languages such as C. They re-
quire understanding concepts such as static versus dynamic allocation, method argument
and return types, library imports, and main methods, in order to write simple program-
ming examples. These concepts get in the way of teaching key object-oriented concepts
like encapsulation, message sending, or inheritance. In contrast, Logtalk objects encap-
sulate predicates. There is no need to talk about methods and variables, or function
and data members, before defining a simple predicate and sending the corresponding
message. In addition, the Logtalk support for both prototypes and classes means that
we can teach basic object-oriented concepts using simpler prototype hierarchies before
explaining the difference between classes and instances or between instantiation and
specialization mechanisms. There are no main, static, void, include or import key-
words cluttering and distracting the student from the concept that a given example
tries to convey, as it happens in C++ or Java. There is no rich, integrated, devel-
opment environment whose basics need to be understood and mastered before simple
programs can be written as in Smalltalk. A simple text editor suffices. For students

204 Conclusions

with a basic knowledge of Prolog programming, Logtalk is an ideal learning tool for
a smooth transition from logic programming to object-oriented programming, due to
the use of familiar Prolog syntax and semantics and to the support of a wide range of
object-oriented systems.

Logtalk in numbers

In the last two years, Logtalk was downloaded an average of 270 copies per month5 (9
copies per day). In addition, Logtalk is distributed with YAP, an open-source Prolog
compiler. New releases are in general announced only in the Logtalk mailing list (that
is subscribed by around 70 users) and in the Freshmeat web site [115] (a web index of
cross-platform software, mostly open-source products; around 10 users have subscribed
to new Logtalk releases through this web site). The Logtalk web site is linked from
around one hundred web sites, ranging from links in personal pages to web directories
of programming resources. These are modest numbers when compared to the estimated
size of the Prolog user community. They show that there is enough interest on Prolog
object-oriented extensions to continue Logtalk development, but also that more efforts
need to be done to increase the use of Logtalk.

Future work

Short-term development plans include making the language and more appealing to po-
tential users by improving its documentation, library, and examples. A key goal is to
continue to make Logtalk an attractive language for teaching object-oriented concepts
to undergraduate students. In addition, complex examples must be written to illustrate
the potential of Logtalk to deal with software engineering problems.

Mid-term plans include publishing this thesis results and improving the Logtalk com-
piler technology. The work spent on implementing Logtalk, and on the writing of this
thesis, must be translated into technical and scientific publications, which will describe
major features such as component-based programming through categories, the support
for both prototypes and classes, and the integration of event-driven programming and
object-oriented programming. In respect to the compiler implementation, several im-
provements are planned:

• Support for outdated versions of Prolog compilers will be dropped. This will ease
Logtalk maintenance. In addition, this will allow us to take advantage of features
only available in recent Prolog compilers.

• Message sending performance will be optimized by using static binding whenever
possible.

• A new implementation will be developed by merging the Logtalk code base with an
open-source Prolog compiler, resulting in a stand-alone Logtalk version. This will
be an alternative implementation, complementing, but not replacing, the current
preprocessor implementation of Logtalk.

• A suite of tests will be developed to help certify Prolog compatibility with Logtalk.
5http://www.logtalk.org/statistics.html

Future work 205

A long-term goal is to make Logtalk a de facto standard for object-oriented program-
ming in Prolog. One of the major hurdles to overcome is to fight the perception of
Prolog modules as a “good enough” solution for software engineering problems in Pro-
log applications.

Appendix A

Logtalk Grammar

This appendix formalizes the syntax of the Logtalk language through a grammar. The
Logtalk grammar syntax used here, is a simplification of the Backus-Naur Form notation
[116, 117]. Non-terminal symbols are represented in italics. Non-terminal symbols
common to Prolog (such as atom) are not defined here. Their definition can be found
in the ISO Prolog Standard [2]. Terminal symbols are represented using a fixed width
font. Alternative constructs are separated by a vertical bar. Optional constructs are
enclosed in “[]”. The grammar productions are listed in a top-down fashion, starting
with the entity enclosing directives. Most productions are annotated with brief remarks.
For more details and examples, please see the next appendix.

A.1 Entity types

There are three entity types in Logtalk: objects, categories, and protocols. They are
the smallest unit of code that can be compiled by Logtalk.

entity →
object |
category |
protocol

A.2 Entity definitions

Every entity has a textual representation and can thus be defined in a source file. The
textual representation begins with a starting directive, followed by the entity directives
and clauses, and ends with an ending directive.

A.2.1 Object definition

object →
begin object directive [object directives] [clauses] end object directive

207

208 Appendix A. Logtalk Grammar

begin object directive →
:- object(object identifier [, object relations]).

end object directive →
:- end object.

object relations →
prototype relations |
non prototype relations

prototype relations →
prototype relation |
prototype relation , prototype relations

prototype relation →
implements protocols |
imports categories |
extends objects

non prototype relations →
non prototype relation |
non prototype relation , non prototype relations

non prototype relation →
implements protocols |
imports categories |
instantiates classes |
specializes classes

Note that the object relations can be either prototype relations or class/instance re-
lations. In addition, the ordering of the object relations above is not mandatory. It
is, however, the recommended ordering because it reflects the search strategy used by
Logtalk when looking up predicate declarations and definitions.

A.2.2 Category definition

category →
begin category directive [category directives] [clauses] end category directive

begin category directive →
:- category(category identifier [, implements protocols]).

end category directive →
:- end category.

A.3. Entity relations 209

A.2.3 Protocol definition

protocol →
begin protocol directive [protocol directives] end protocol directive

begin protocol directive →
:- protocol(protocol identifier [, extends protocols]).

end protocol directive →
:- end protocol.

A.3 Entity relations

Entity relations describe all possible relations between objects, protocols, and categories.

A.3.1 Implemented protocols

An object or category may implement a number of protocols. By default, the implemen-
tation is public. To restrict the scope of the implemented predicates, the implemented
protocol identifier may be preceded by a scope keyword.

implements protocols →
implements(implemented protocols)

implemented protocols →
implemented protocol |
implemented protocol sequence |
implemented protocol list

implemented protocol →
protocol identifier |
scope :: protocol identifier

implemented protocol sequence →
implemented protocol |
implemented protocol , implemented protocol sequence

implemented protocol list →
[implemented protocol sequence]

A.3.2 Extended protocols

A protocol may extend a number of other protocols. By default, the extension is public.
To restrict the scope of the predicates in an extended protocol, the extended protocol
identifier may be preceded by a scope keyword.

210 Appendix A. Logtalk Grammar

extends protocols →
extends(extended protocols)

extended protocols →
extended protocol |
extended protocol sequence |
extended protocol list

extended protocol →
protocol identifier |
scope :: protocol identifier

extended protocol sequence →
extended protocol |
extended protocol , extended protocol sequence

extended protocol list →
[extended protocol sequence]

A.3.3 Imported categories

An object may import a number of categories. By default, the importation is public. To
restrict the scope of the imported predicates, the category identifier may be preceded
by a scope keyword.

imports categories →
imports(imported categories)

imported categories →
imported category |
imported category sequence |
imported category list

imported category →
category identifier |
scope :: category identifier

imported category sequence →
imported category |
imported category , imported category sequence

imported category list →
[imported category sequence]

A.3. Entity relations 211

A.3.4 Extended objects

An object may extend a number of objects, resulting in a prototype hierarchy. By
default, the extension is public. To restrict the scope of the predicates inherited from
an extended object, the extended object identifier may be preceded by a scope keyword.

extends objects →
extends(extended objects)

extended objects →
extended object |
extended object sequence |
extended object list

extended object →
object identifier |
scope :: object identifier

extended object sequence →
extended object |
extended object , extended object sequence

extended object list →
[extended object sequence]

A.3.5 Instantiated objects

An object (an instance) may instantiate a number of objects (its classes). By default, the
instantiation is public. To restrict the scope of the predicates declared in an instantiated
class, the class identifier may be preceded by a scope keyword.

instantiates classes →
instantiates(instantiated objects)

instantiated objects →
instantiated object |
instantiated object sequence |
instantiated object list

instantiated object →
object identifier |
scope :: object identifier

212 Appendix A. Logtalk Grammar

instantiated object sequence →
instantiated object |
instantiated object , instantiated object sequence

instantiated object list →
[instantiated object sequence]

A.3.6 Specialized objects

An object (a class) may specialize a number of objects (its superclasses), resulting in
a class-based or generalization-specialization hierarchy. By default, the specialization
is public. To restrict the scope of the predicates inherited from a specialized class, the
specialized class identifier may be preceded by a scope keyword.

specializes classes →
specializes(specialized objects)

specialized objects →
specialized object |
specialized object sequence |
specialized object list

specialized object →
object identifier |
scope :: object identifier

specialized object sequence →
specialized object |
specialized object , specialized object sequence

specialized object list →
[specialized object sequence]

A.3.7 Entity relation scope

The relation between two entities can be restricted by using one of the following scope
keywords:

scope →
public |
protected |
private

A.4. Entity identifiers 213

Note that when an entity scope keyword is absent, the entity relation is public by default.
This is the most common case, allowing us to simplify our code by removing redundant
keywords.

A.4 Entity identifiers

It is important to note that all entity identifiers share the same namespace. That is to
say, that we cannot have two entities of different types with the same identifier.

entity identifiers →
entity identifier |
entity identifier sequence |
entity identifier list

entity identifier →
object identifier |
protocol identifier |
category identifier

entity identifier sequence →
entity identifier |
entity identifier , entity identifier sequence

entity identifier list →
[entity identifier sequence]

A.4.1 Object identifiers

An object identifier is either an atom or a compound term (in case of parametric objects).

object identifiers →
object identifier |
object identifier sequence |
object identifier list

object identifier →
atom |
compound

object identifier sequence →
object identifier |
object identifier , object identifier sequence

214 Appendix A. Logtalk Grammar

object identifier list →
[object identifier sequence]

A.4.2 Category identifiers

The idea behind categories is to encapsulate functionally cohesive sets of predicates. The
category identifier should reflect this functionality. For example, if a category contains
predicates related to event monitoring, then “monitoring” is an appropriated category
identifier while “monitor” will be a poor choice because a category is not an object as
the name suggests.

category identifiers →
category identifier |
category identifier sequence |
category identifier list

category identifier →
atom

category identifier sequence →
category identifier |
category identifier , category identifier sequence

category identifier list →
[category identifier sequence]

A.4.3 Protocol identifiers

We often want to name a protocol using an identifier similar to the object that im-
plements it. By convention, this is done by appending the letter “p” to the object
identifier. For example, if we have a “list” object, we may encapsulate the predicate
declarations in a protocol named “listp”. The same convention applies to the definition
of a category protocol.

protocol identifiers →
protocol identifier |
protocol identifier sequence |
protocol identifier list

protocol identifier →
atom

A.5. Directives 215

protocol identifier sequence →
protocol identifier |
protocol identifier , protocol identifier sequence

protocol identifier list →
[protocol identifier sequence]

A.5 Directives

Logtalk defines two sets of directives: entity directives and predicate directives. Entity
directives apply to an entity as a whole. Predicate directives only affect the compilation
of the specified predicates.

A.5.1 Entity directives

For details about the syntax of the “info/1” directive, listed below, and available for
all entity types, please see the next section on predicate directives.

Object directives

object directives →
object directive |
object directive object directives

object directive →
:- initialization(callable). |
:- dynamic. |
:- uses(object identifiers). |
:- calls(protocol identifiers). |
:- info(info list). |
predicate directives

Protocol directives

protocol directives →
protocol directive |
protocol directive protocol directives

protocol directive →
:- initialization(callable). |
:- dynamic. |
:- info(info list). |
predicate directives

216 Appendix A. Logtalk Grammar

Category directives

category directives →
category directive |
category directive category directives

category directive →
:- initialization(callable). |
:- dynamic. |
:- uses(object identifiers). |
:- calls(protocol identifiers). |
:- info(info list). |
predicate directives

A.5.2 Predicate directives

predicate directives →
predicate directive |
predicate directive predicate directives

predicate directive →
scope directive |
mode directive |
metapredicate directive |
info directive |
operator directive |
dynamic directive |
discontiguous directive

The “operator”, “dynamic”, and “discontiguous” directives are not described here.
They follow the definitions found in ISO Prolog Standard, with the one difference that
their scope is the containing object (or category) instead of the whole Prolog database.

Scope directive

This is the most important predicate directive. Without it, a predicate is local to an
object (or category) and cannot be called from other objects or seen by the predefined
reflection methods. That is not to say that we must have a scope directive for each
predicate. If we use many auxiliary predicates, then we may choose to avoid writing a
scope directive for each one of them.

scope directive →
:- public(predicate indicator term). |
:- protected(predicate indicator term). |
:- private(predicate indicator term).

A.5. Directives 217

predicate indicator term →
predicate indicator |
predicate indicator sequence |
predicate indicator list

predicate indicator sequence →
predicate indicator |
predicate indicator , predicate indicator sequence

predicate indicator list →
[predicate indicator sequence]

Mode directive

The mode directive is used to declare predicate call templates, including the number of
solutions or proofs associated with each template. It can also be used to declare that a
call template will result in a runtime error. The argument’s type can be appended to
its instantiation mode.

mode directive →
:- mode(predicate mode term , number of solutions).

predicate mode term →
atom (mode terms)

mode terms →
mode term |
mode term , mode terms

mode term →
@ [type] |
+ [type] |
- [type] |
? [type]

type →
logtalk type |
prolog type |
user defined type

logtalk type →
object | category | protocol |
event

218 Appendix A. Logtalk Grammar

prolog type →
term |
nonvar | var |
compound |
atomic | atom |
number | integer | float

user defined type →
atom |
compound

number of solutions →
zero | zero or one | zero or more |
one | one or more |
error

Metapredicate directive

Metapredicate directives are mandatory for every user-defined metapredicate in order
to properly compile the predicate definition.

metapredicate directive →
:- metapredicate(metapredicate mode indicator).

metapredicate mode indicator →
atom (metapredicate terms)

metapredicate terms →
metapredicate term |
metapredicate term , metapredicate terms

metapredicate term →
:: | *

The “::” symbol indicates that the corresponding argument will be called as a goal in
the predicate definition. The “*” symbol is used for normal, non-meta arguments.

Documentation directive

The “info/2” documentation directive provides a way to declare arbitrary information
about a predicate using both predefined and user-defined keywords.

info directive →
:- info(predicate indicator , info list).

A.6. Clauses and goals 219

info list →
[] |
[info item is nonvar | info list]

info item →
comment | author | version | date | parnames |
argnames | definition | redefinition | allocation |
atom

When possible, one should use one of the above predefined information keywords instead
of inventing our own. These predefined keywords may be especially processed by a
Logtalk compiler, whenever automatic entity documentation is generated.

A.6 Clauses and goals

The syntax for goals and predicate clauses defined by the ISO Prolog Standard is ex-
tended to allow the use of Logtalk control constructs for message sending and for by-
passing the Logtalk preprocessor.

A.6.1 Clauses

Object and category predicate clauses can be both regular Prolog clauses or clauses
using the Definite clause grammar notation.

clauses →
clause |
clause clauses

clause →
regular clause |
grammar clause

grammar clause →
non terminal --> grammar clause body

non terminal →
callable |
non terminal message to self |
non terminal message to object

non terminal message to object →
receivers :: callable

non terminal message to self →
:: callable

220 Appendix A. Logtalk Grammar

A.6.2 Goals

goal →
callable |
message call |
external call

message call →
message to object |
message to self |
message to super

message to object →
receivers :: messages

message to self →
:: messages

message to super →
^^ message

messages →
message |
(message , messages) |
(message ; messages)

message →
callable |
variable

receivers →
receiver |
(receiver , receivers) |
(receiver ; receivers)

receiver →
object identifier |
variable

external call →
{ callable }

Note that, at compilation time, a message can be a non-instantiated variable. At run-
time, the variable must be instantiated to a callable term before sending a message.

A.7. Entity properties 221

Otherwise, an exception will be generated. This is equivalent to sending the message
call(Variable) to an object. Note that a message can be any callable term including
control constructs like conjunctions, disjunctions, and if-then-else calls.

A.7 Entity properties

All entity types share the same set of properties:

category property →
static | dynamic |
built in

object property →
static | dynamic |
built in

protocol property →
static | dynamic |
built in

The property “dynamic” is often tested to ensure the applicability of built-in predicates
and methods that modify or abolish dynamic entities. One example of a built-in entity
is the pseudo-object “user” that contains all Prolog clauses that are not encapsulated
by Logtalk objects or categories.

A.8 Predicate properties

The set of predicate properties defined in Logtalk is loosely based on ISO Standard
for the Prolog module system. However, some properties have different meanings. For
example, the properties “public” and “private‘” represent the predicate scope and not
the possibility of inspecting the predicate source code.

predicate property →
static | dynamic |
private | protected | public |
built in |
declared in(entity identifier) |
defined in(object identifier | category identifier) |
metapredicate(metapredicate mode indicator)

We can only retrieve the properties of declared predicates, built-in predicates, and built-
in methods. In addition, note that some of the properties such as “declared in/1” are
only defined for user predicates.

Appendix B

Logtalk language reference

This appendix contains the Logtalk language reference. It includes a detailed description
of every directive, built-in predicate, built-in method, and control construct defined in
Logtalk. The descriptions are organized by groups (and sub-groups) and in alphabetical
order inside each group. Note that most descriptions refer to terms defined in the
Logtalk grammar, described in the previous appendix.

B.1 Directives

As seen in the appendix A, Logtalk defines two sets of directives: entity directives and
predicate directives. Entity directives include directives for defining new entities and
directives that affect the compilation of an entity as a whole. Predicate directives affect
the compilation of specific predicates.

B.1.1 Entity directives

calls/1

Description

calls(Protocol)
calls(Protocol1, Protocol2, ...)
calls([Protocol1, Protocol2, ...])

This directive declares the protocols that are called by predicates defined in an
object or category.

Templates and modes

calls(+protocol_identifiers)

Examples

:- calls(comparingp).

223

224 Appendix B. Logtalk language reference

category/1-2

Description
category(Category)

category(Category,
implements(Protocols))

Starting category directive.

Templates and modes
category(+category_identifier)

category(+category_identifier,
implements(+implemented_protocols))

Examples
:- category(monitoring).

:- category(monitoring,
implements(monitoringp)).

:- category(attributes,
implements(protected::variables)).

dynamic/0

Description
dynamic

This directive declares an entity and all of its clauses dynamic.

Templates and modes
dynamic

Examples
:- dynamic.

end category/0

Description
end_category

Ending category directive.

Templates and modes
end_category

Examples
:- end_category.

B.1. Directives 225

end object/0

Description

end_object

Ending object directive.

Templates and modes

end_object

Examples

:- end_object.

end protocol/0

Description

end_protocol

Ending protocol directive.

Templates and modes

end_protocol

Examples

:- end_protocol.

info/1

Description

info(List)

Documenting directive for objects, protocols, and categories.

Templates and modes

info(+info_list)

Examples

:- info([
version is 1.0,
author is ’Paulo Moura’,
date is 2000/4/20,
comment is ’List protocol.’]).

226 Appendix B. Logtalk language reference

initialization/1

Description

initialization(Goal)

This directive sets up a goal to be called immediately after the container entity
has been loaded to memory.

Templates and modes

initialization(@goal)

Examples

:- initialization(init).

object/1-5

Description
Stand-alone objects

object(Object)

object(Object,
implements(Protocols))

object(Object,
imports(Categories))

object(Object,
implements(Protocols),
imports(Categories))

Prototypes

object(Object,
extends(Objects))

object(Object,
implements(Protocols),
extends(Objects))

object(Object,
imports(Categories),
extends(Objects))

object(Object,
implements(Protocols),
imports(Categories),
extends(Objects))

B.1. Directives 227

Instances

object(Object,
instantiates(Classes))

object(Object,
implements(Protocols),
instantiates(Classes))

object(Object,
imports(Categories),
instantiates(Classes))

object(Object,
implements(Protocols),
imports(Categories),
instantiates(Classes))

Classes

object(Object,
specializes(Classes))

object(Object,
implements(Protocols),
specializes(Classes))

object(Object,
imports(Categories),
specializes(Classes))

object(Object,
implements(Protocols),
imports(Categories),
specializes(Classes))

Classes with metaclasses

object(Object,
instantiates(Classes),
specializes(Classes))

object(Object,
implements(Protocols),
instantiates(Classes),
specializes(Classes))

228 Appendix B. Logtalk language reference

object(Object,
imports(Categories),
instantiates(Classes),
specializes(Classes))

object(Object,
implements(Protocols),
imports(Categories),
instantiates(Classes),
specializes(Classes))

Starting object directive.

Templates and modes
Stand-alone objects

object(+object_identifier)

object(+object_identifier,
implements(+implemented_protocols))

object(+object_identifier,
imports(+imported_categories))

object(+object_identifier,
implements(+implemented_protocols),
imports(+imported_categories))

Prototypes

object(+object_identifier,
extends(+extended_objects))

object(+object_identifier,
implements(+implemented_protocols),
extends(+extended_objects))

object(+object_identifier,
imports(+imported_categories),
extends(+extended_objects))

object(+object_identifier,
implements(+implemented_protocols),
imports(+imported_categories),
extends(+extended_objects))

B.1. Directives 229

Instances

object(+object_identifier,
instantiates(+instantiated_objects))

object(+object_identifier,
implements(+implemented_protocols),
instantiates(+instantiated_objects))

object(+object_identifier,
imports(+imported_categories),
instantiates(+instantiated_objects))

object(+object_identifier,
implements(+implemented_protocols),
imports(+imported_categories),
instantiates(+instantiated_objects))

Classes

object(+object_identifier,
specializes(+specialized_objects))

object(+object_identifier,
implements(+implemented_protocols),
specializes(+specialized_objects))

object(+object_identifier,
imports(+imported_categories),
specializes(+specialized_objects))

object(+object_identifier,
implements(+implemented_protocols),
imports(+imported_categories),
specializes(+specialized_objects))

Classes with metaclasses

object(+object_identifier,
instantiates(+instantiated_objects),
specializes(+specialized_objects))

object(+object_identifier,
implements(+implemented_protocols),
instantiates(+instantiated_objects),
specializes(+specialized_objects))

230 Appendix B. Logtalk language reference

object(+object_identifier,
imports(+imported_categories),
instantiates(+instantiated_objects),
specializes(+specialized_objects))

object(+object_identifier,
implements(+implemented_protocols),
imports(+imported_categories),
instantiates(+instantiated_objects),
specializes(+specialized_objects))

Examples

:- object(list).

:- object(list,
implements(listp)).

:- object(list,
extends(compound)).

:- object(list,
implements(listp),
extends(compound)).

:- object(object,
imports(initialization),
instantiates(class)).

:- object(abstract_class,
instantiates(class),
specializes(object)).

:- object(agent,
imports(private::attributes)).

protocol/1-2

Description

protocol(Protocol)

protocol(Protocol,
extends(Protocols))

Starting protocol directive.

Templates and modes

protocol(+protocol_identifier)

B.1. Directives 231

protocol(+protocol_identifier,
extends(+extended_protocols))

Examples

:- protocol(listp).

:- protocol(listp,
extends(compoundp)).

:- protocol(queuep,
extends(protected::listp)).

uses/1

Description

uses(Object)
uses(Object1, Object2, ...)
uses([Object1, Object2, ...])

This directive declares objects that receive messages sent by predicates defined in
the category or object containing the directive.

Templates and modes

uses(+object_identifiers)

Examples

:- uses(list).

B.1.2 Predicate directives

discontiguous/1

Description

discontiguous(Predicate)
discontiguous(Predicate1, Predicate2, ...)
discontiguous([Predicate1, Predicate2, ...])

This directive declares discontiguous predicates.

Templates and modes

discontiguous(+predicate_indicator_term)

Examples

:- discontiguous(counter/1).
:- discontiguous(lives/2, works/2).
:- discontiguous([db/4, key/2, file/3]).

232 Appendix B. Logtalk language reference

dynamic/1

Description

dynamic(Predicate)
dynamic(Predicate1, Predicate2, ...)
dynamic([Predicate1, Predicate2, ...])

This directive declares dynamic predicates. Note that an object can be static and
have both static and dynamic predicates.

Templates and modes

dynamic(+predicate_indicator_term)

Examples

:- dynamic(counter/1).
:- dynamic(lives/2, works/2).
:- dynamic([db/4, key/2, file/3]).

info/2

Description

info(Functor/Arity, List)

Documenting directive for predicates.

Templates and modes

info(+predicate_indicator, +info_list)

Examples

:- info(empty/1, [
comment is ’True if the argument is an empty list.’,
argnames is [’List’]]).

metapredicate/1

Description

metapredicate(Metapredicate)

This directive declares metapredicates, i.e. predicates that have arguments that
will be called as goals.

Templates and modes

metapredicate(+metapredicate_predicate_term)

Examples

:- metapredicate(findall(*, ::, *)).
:- metapredicate(forall(::, ::)).

B.1. Directives 233

mode/2

Description
mode(Mode, Number_of_solutions)

Most predicates can be used with several instantiation modes. This directive
enables the specification of each instantiation mode and the corresponding number
of solutions/proofs.

Templates and modes
mode(+predicate_mode_term, +number_of_solutions)

Examples
:- mode(append(-, -, +), zero_or_more).
:- mode(append(+list, +list, -list), zero_or_one).
:- mode(var(@term), zero_or_one).
:- mode(arg(-, -, +), error).

op/3

Description
op(Precedence, Associativity, Operator)

Operator declaration.

Templates and modes
op(+integer, +associativity, +atom)

Examples
:- op(950, fx, +).
:- op(950, fx, ?).
:- op(950, fx, @).
:- op(950, fx, -).

private/1

Description
private(Predicate)
private(Predicate1, Predicate2, ...)
private([Predicate1, Predicate2, ...])

This directive declares private predicates. A private predicate can only be called
from the object containing the private directive.

Templates and modes
private(+predicate_indicator_term)

Examples
:- private(counter/1).
:- private(init/1, free/1).
:- private([data/3, key/1, keys/1]).

234 Appendix B. Logtalk language reference

protected/1

Description

protected(Predicate)
protected(Predicate1, Predicate2, ...)
protected([Predicate1, Predicate2, ...])

This directive declares protected predicates. A protected predicate can only be
called from the object containing the declaration, or from an object that inherits
the declaration.

Templates and modes

protected(+predicate_indicator_term)

Examples

:- protected(init/1).
:- protected(print/2, convert/4).
:- protected([load/1, save/3]).

public/1

Description

public(Predicate)
public(Predicate1, Predicate2, ...)
public([Predicate1, Predicate2, ...])

This directive declares public predicates. A public predicate can be called from
any object.

Templates and modes

public(+predicate_indicator_term)

Examples

:- public(ancestor/1).
:- public(instance/1, instances/1).
:- public([leaf/1, leaves/1]).

B.2 Built-in predicates

Logtalk adds a new set of built-in predicates to the ISO Prolog standard. These pred-
icates, described in this section, enable the programmer to inspect, create, and abolish
Logtalk entities, compile and load Logtalk source files, and inspect, create, and abolish
events.

B.2.1 Enumerating entities

This set of built-in predicates enumerate, by backtracking, defined objects, protocols,
and categories.

B.2. Built-in predicates 235

current category/1

Description
current_category(Category)

This built-in predicate enumerates, by backtracking, all currently defined cate-
gories. All categories are returned, static, dynamic, or built-in.

Templates and modes
current_category(?category_identifier)

Errors
Category is neither a variable nor a valid category identifier:

type error(category identifier, Category)

Examples
| ?- current_category(monitoring).

current object/1

Description
current_object(Object)

This built-in predicate enumerates, by backtracking, all currently defined objects.
All objects are returned, static, dynamic or built-in.

Templates and modes
current_object(?object_identifier)

Errors
Object is neither a variable nor a valid object identifier:

type error(object identifier, Object)

Examples
| ?- current_object(list).

current protocol/1

Description
current_protocol(Protocol)

This built-in predicate enumerates, by backtracking, all currently defined proto-
cols. All protocols are returned, static, dynamic, or built-in.

Templates and modes
current_protocol(?protocol_identifier)

Errors
Protocol is neither a variable nor a valid protocol identifier:

type error(protocol identifier, Protocol)

Examples
| ?- current_protocol(listp).

236 Appendix B. Logtalk language reference

B.2.2 Enumerating entity properties

This section describes built-in predicates for enumerating, by backtracking, object, pro-
tocol, and category properties.

category property/2

Description

category_property(Category, Property)

This built-in predicate enumerates, by backtracking, the properties of defined cat-
egories.

Templates and modes

category_property(?category_identifier, ?category_property)

Errors
Category is neither a variable nor a valid category identifier:

type error(category identifier, Category)
Property is neither a variable nor a valid category property:

domain error(category property, Property)

Examples

| ?- category_property(Category, dynamic).

object property/2

Description

object_property(Object, Property)

This built-in predicate enumerates, by backtracking, the properties of defined ob-
jects.

Templates and modes

object_property(?object_identifier, ?object_property)

Errors
Object is neither a variable nor a valid object identifier:

type error(object identifier, Object)
Property is neither a variable nor a valid object property:

domain error(object property, Property)

Examples

| ?- object_property(list, Property).

B.2. Built-in predicates 237

protocol property/2

Description
protocol_property(Protocol, Property)

This built-in predicate enumerates, by backtracking, the properties of defined pro-
tocols.

Templates and modes
protocol_property(?protocol_identifier, ?protocol_property)

Errors
Protocol is neither a variable nor a valid protocol identifier:

type error(protocol identifier, Protocol)
Property is neither a variable nor a valid protocol property:

domain error(protocol property, Property)

Examples
| ?- protocol_property(listp, Property).

B.2.3 Creating new entities

This section describes built-in predicates that enable the dynamic creation of new ob-
jects, protocols, and categories.

create category/4

Description
create_category(Identifier, Relations, Directives, Clauses)

This built-in predicate creates a new dynamic category.

Templates and modes
create_category(+category_identifier, +list, +list, +list)

Errors
Identifier is a variable:

instantiation error
Identifier is not a valid category identifier:

type error(category identifier, Identifier)
Identifier is already in use:

permission error(replace, category, Identifier)
permission error(replace, object, Identifier)
permission error(replace, protocol, Identifier)

Relations is not a list:
type error(list, Relations)

Directives is not a list:
type error(list, Directives)

Clauses is not a list:
type error(list, Clauses)

238 Appendix B. Logtalk language reference

Examples

| ?- create_category(foo, [implements(barp)], [], [bar(foo)]).

create object/4

Description

create_object(Identifier, Relations, Directives, Clauses)

This built-in predicate creates a new dynamic object.

Templates and modes

create_object(+object_identifier, +list, +list, +list)

Errors
Identifier is a variable:

instantiation error
Identifier is not a valid object identifier:

type error(object identifier, Identifier)
Identifier is already in use:

permission error(replace, category, Identifier)
permission error(replace, object, Identifier)
permission error(replace, protocol, Identifier)

Relations is not a list:
type error(list, Relations)

Directives is not a list:
type error(list, Directives)

Clauses is not a list:
type error(list, Clauses)

Examples

| ?- create_object(foo, [], [public(foo/1)], [foo(1), foo(2)]).

create protocol/3

Description

create_protocol(Identifier, Relations, Directives)

This built-in predicate creates a new dynamic protocol.

Templates and modes

create_protocol(+protocol_identifier, +list, +list)

Errors

Identifier is a variable:
instantiation error

Identifier is not a valid protocol identifier:
type error(protocol identifier, Identifier)

B.2. Built-in predicates 239

Identifier is already in use:
permission error(replace, category, Identifier)
permission error(replace, object, Identifier)
permission error(replace, protocol, Identifier)

Relations is not a list:
type error(list, Relations)

Directives is not a list:
type error(list, Directives)

Examples

| ?- create_protocol(foop, [extends(barp)], [public(foo/1)]).

B.2.4 Abolishing entities

This section describes the built-in predicates that enable the abolishing of defined dy-
namic entities (objects, protocols, or categories).

abolish category/1

Description

abolish_category(Category)

This built-in predicate removes a dynamic category from the database.

Templates and modes

abolish_category(@category_identifier)

Errors
Category is a variable:

instantiation error
Category is not a valid category identifier:

type error(category identifier, Category)
Category is an identifier of a static category:

permission error(modify, static category, Category)
Category does not exist:

existence error(category, Category)

Examples

| ?- abolish_category(monitoring).

abolish object/1

Description

abolish_object(Object)

This built-in predicate removes a dynamic object from the database.

Templates and modes

abolish_object(@object_identifier)

240 Appendix B. Logtalk language reference

Errors
Object is a variable:

instantiation error
Object is not a valid object identifier:

type error(object identifier, Object)
Object is an identifier of a static object:

permission error(modify, static object, Object)
Object does not exist:

existence error(object, Object)

Examples

| ?- abolish_object(list).

abolish protocol/1

Description

abolish_protocol(Protocol)

This built-in predicate removes a dynamic protocol from the database.

Templates and modes

abolish_protocol(@protocol_identifier)

Errors
Protocol is a variable:

instantiation error
Protocol is not a valid protocol identifier:

type error(protocol identifier, Protocol)
Protocol is an identifier of a static protocol:

permission error(modify, static protocol, Protocol)
Protocol does not exist:

existence error(protocol, Protocol)

Examples

| ?- abolish_protocol(listp).

B.2.5 Entity relations

This section describes a set of built-in predicates that enumerate, by backtracking, the
relations between objects, protocols, and categories.

extends object/2-3

Description

extends_object(Prototype, Parent)
extends_object(Prototype, Parent, Scope)

This built-in predicate enumerates, by backtracking, all pairs of objects such that
the first one extends the second.

B.2. Built-in predicates 241

Templates and modes

extends_object(?object_identifier, ?object_identifier)
extends_object(?object_identifier, ?object_identifier, ?scope)

Errors
Prototype is neither a variable nor a valid object identifier:

type error(object identifier, Prototype)
Parent is neither a variable nor a valid object identifier:

type error(object identifier, Parent)
Scope is neither a variable nor a valid entity relation scope:

type error(scope, Scope)

Examples

| ?- extends_object(Object, state_space).

| ?- extends_object(Object, list, public).

extends protocol/2-3

Description

extends_protocol(Protocol1, Protocol2)
extends_protocol(Protocol1, Protocol2, Scope)

This built-in predicate enumerates, by backtracking, all pairs of protocols such
that the first one extends the second.

Templates and modes

extends_protocol(?protocol_identifier, ?protocol_identifier)
extends_protocol(?protocol_identifier, ?protocol_identifier, ?scope)

Errors
Protocol1 is neither a variable nor a valid protocol identifier:

type error(protocol identifier, Protocol1)
Protocol2 is neither a variable nor a valid protocol identifier:

type error(protocol identifier, Protocol2)
Scope is neither a variable nor a valid entity relation scope:

type error(scope, Scope)

Examples

| ?- extends_protocol(listp, Protocol).

| ?- extends_protocol(Protocol, termp, private).

242 Appendix B. Logtalk language reference

implements protocol/2-3

Description

implements_protocol(Object, Protocol)
implements_protocol(Category, Protocol)

implements_protocol(Object, Protocol, Scope)
implements_protocol(Category, Protocol, Scope)

This built-in predicate enumerates, by backtracking, all pairs of entities such that
an object or a category implements a protocol.

Templates and modes

implements_protocol(?object_identifier, ?protocol_identifier)
implements_protocol(?category_identifier, ?protocol_identifier)

implements_protocol(?object_identifier, ?protocol_identifier, ?scope)
implements_protocol(?category_identifier, ?protocol_identifier, ?scope)

Errors
Object is neither a variable nor a valid object identifier:

type error(object identifier, Object)
Category is neither a variable nor a valid category identifier:

type error(category identifier, Category)
Protocol is neither a variable nor a valid protocol identifier:

type error(protocol identifier, Protocol)
Scope is neither a variable nor a valid entity relation scope:

type error(scope, Scope)

Examples

| ?- implements_protocol(List, listp).

| ?- implements_protocol(List, listp, public).

imports category/2-3

Description

imports_category(Object, Category)
imports_category(Object, Category, Scope)

This built-in predicate enumerates, by backtracking, all pairs of objects and cate-
gories such that the first one imports the other.

Templates and modes

imports_category(?object_identifier, ?category_identifier)
imports_category(?object_identifier, ?category_identifier, ?scope)

B.2. Built-in predicates 243

Errors
Object is neither a variable nor a valid object identifier:

type error(object identifier, Object)
Category is neither a variable nor a valid category identifier:

type error(category identifier, Category)
Scope is neither a variable nor a valid entity relation scope:

type error(scope, Scope)

Examples

| ?- imports_category(debugger, monitoring).

| ?- imports_category(Object, monitoring, protected).

instantiates class/2-3

Description

instantiates_class(Instance, Class)
instantiates_class(Instance, Class, Scope)

This built-in predicate enumerates, by backtracking, all pairs of objects such that
the first one instantiates the second.

Templates and modes

instantiates_class(?object_identifier, ?object_identifier)
instantiates_class(?object_identifier, ?object_identifier, ?scope)

Errors
Instance is neither a variable nor a valid object identifier:

type error(object identifier, Instance)
Class is neither a variable nor a valid object identifier:

type error(object identifier, Class)
Scope is neither a variable nor a valid entity relation scope:

type error(scope, Scope)

Examples

| ?- instantiates_class(water_jug, state_space).

| ?- instantiates_class(Space, state_space, public).

specializes class/2-3

Description

specializes_class(Class, Superclass)
specializes_class(Class, Superclass, Scope)

This built-in predicate enumerates, by backtracking, all pairs of objects such that
the first one specializes the second.

244 Appendix B. Logtalk language reference

Templates and modes

specializes_class(?object_identifier, ?object_identifier)
specializes_class(?object_identifier, ?object_identifier, ?scope)

Errors
Class is neither a variable nor a valid object identifier:

type error(object identifier, Class)
Superclass is neither a variable nor a valid object identifier:

type error(object identifier, Superclass)
Scope is neither a variable nor a valid entity relation scope:

type error(scope, Scope)

Examples

| ?- specializes_class(Subclass, state_space).

| ?- specializes_class(Subclass, state_space, public).

B.2.6 Event handling

This section describes the set of built-in predicates that enable the definition, inspection,
and abolishing of events.

abolish events/5

Description

abolish_events(Event, Object, Message, Sender, Monitor)

Abolishes all matching events.

Templates and modes

abolish_events(@event, @object_identifier, @callable,
@object_identifier, @object_identifier)

Errors
Event is neither a variable nor a valid event identifier:

type error(event, Event)
Object is neither a variable nor a valid object identifier:

type error(object identifier, Object)
Message is neither a variable nor a callable term:

type error(callable, Message)
Sender is neither a variable nor a valid object identifier:

type error(object identifier, Sender)
Monitor is neither a variable nor a valid object identifier:

type error(object identifier, Monitor)

Examples

| ?- abolish_events(_, list, _, _, debugger).

B.2. Built-in predicates 245

current event/5

Description
current_event(Event, Object, Message, Sender, Monitor)

This built-in predicate enumerates, by backtracking, all defined events.

Templates and modes
current_event(?event, ?object_identifier, ?callable,

?object_identifier, ?object_identifier)

Errors
Event is neither a variable nor a valid event identifier:

type error(event, Event)
Object is neither a variable nor a valid object identifier:

type error(object identifier, Object)
Message is neither a variable nor a callable term:

type error(callable, Message)
Sender is neither a variable nor a valid object identifier:

type error(object identifier, Sender)
Monitor is neither a variable nor a valid object identifier:

type error(object identifier, Monitor)

Examples
| ?- current_event(Event, Object, Message, Sender, debugger).

define events/5

Description
define_events(Event, Object, Message, Sender, Monitor)

This built-in predicate defines a new set of events.

Templates and modes
define_events(@event, @object_identifier, @callable,

@object_identifier, +object_identifier)

Errors
Event is neither a variable nor a valid event identifier:

type error(event, Event)
Object is neither a variable nor a valid object identifier:

type error(object identifier, Object)
Message is neither a variable nor a callable term:

type error(callable, Message)
Sender is neither a variable nor a valid object identifier:

type error(object identifier, Sender)
Monitor is a variable:

instantiation error
Monitor is neither a variable nor a valid object identifier:

type error(object identifier, Monitor)

246 Appendix B. Logtalk language reference

Examples

| ?- define_events(_, list, member(_, _), _ , debugger).

B.2.7 Compiling and loading entities

Compiling and loading source files is usually regarded as an implementation-dependent
feature and not part of a formal language definition. However, when we are compiling
and loading a source file, the only thing that is indeed implementation-dependent, is the
for filenames and pathnames syntax: the language specification already describes what
is correct code!

logtalk compile/1

Description

logtalk_compile(Entity)
logtalk_compile(Entities)

This built-in predicate compiles to disk an entity or a list of entities (objects,
protocols, or categories) using the default compiler options specified in the Logtalk
configuration file. The Logtalk file name extension (by default, “.lgt”) must be
omitted. Note that the argument is a list of entity/file names, not file paths.

Templates and modes

logtalk_compile(@atom_or_atom_list)

Errors
Entity is a variable:

instantiation error
Entities is a variable or a list with an element which is a variable:

instantiation error
Entities is neither a variable nor an atom nor a proper list:

type error(list, Entities)
An element Entity of the Entities list is neither a variable nor an atom:

type error(atom, Entity)
Entity or an element Entity of the Entities list does not exist in the current work-
ing directory:

existence error(entity, Entity)

Examples

| ?- logtalk_compile(tree).
| ?- logtalk_compile([listp, list]).

logtalk compile/2

Description

logtalk_compile(Entity, Options)
logtalk_compile(Entities, Options)

B.2. Built-in predicates 247

This built-in predicate compiles to disk an entity or a list of entities (objects,
protocols, or categories) using a list of options. The Logtalk file name extension
(by default, “.lgt”) must be omitted. Note that the first argument is a list of
entity/file names, not file paths.

Templates and modes

logtalk_compile(@atom_or_atom_list, @list)

Errors
Entity is a variable:

instantiation error
Entities is a variable or a list with an element which is a variable:

instantiation error
Entities is neither a variable nor an atom nor a proper list:

type error(list, Entities)
An element Entity of the Entities list is neither a variable nor an atom:

type error(atom, Entity)
Entity or an element Entity of the Entities list does not exist in the current working
directory:

existence error(entity, Entity)
Options is a variable:

instantiation error
Options is neither a variable nor a proper list:

type error(list, Options)
An element Option of the Options list is not valid:

type error(compiler option, Option)

Examples

| ?- logtalk_compile(list, []).

| ?- logtalk_compile([listp, list], [xml(off), report(on)]).

logtalk load/1

Description

logtalk_load(Entity)
logtalk_load(Entities)

This built-in predicate compiles to disk and then loads to memory an entity or a
list of entities (objects, protocols or categories) using the default compiler options
specified in the Logtalk configuration file. The Logtalk file name extension (by
default, “.lgt”) must be omitted. Note that the argument is a list of entity/file
names, not file paths.

Templates and modes

logtalk_load(@atom_or_atom_list)

248 Appendix B. Logtalk language reference

Errors
Entity is a variable:

instantiation error
Entities is a variable or a list with an element which is a variable:

instantiation error
Entities is neither a variable nor an atom nor a proper list:

type error(list, Entities)
An element Entity of the Entities list is neither a variable nor an atom:

type error(atom, Entity)
Entity or an element Entity of the Entities list does not exist in the current work-
ing directory:

existence error(entity, Entity)

Examples
| ?- logtalk_load(tree).

| ?- logtalk_load([listp, list]).

logtalk load/2

Description
logtalk_load(Entity, Options)
logtalk_load(Entities, Options)

This built-in predicate compiles to disk and then loads to memory an entity or
a list of entities (objects, protocols or categories) using a list of options. The
Logtalk file name extension (by default, “.lgt”) must be omitted. Note that the
first argument is a list of entity/file names, not file paths.

Templates and modes
logtalk_load(@atom_or_atom_list, @list)

Errors
Entity is a variable:

instantiation error
Entities is a variable or a list with an element which is a variable:

instantiation error
Entities is neither a variable nor an atom nor a proper list:

type error(list, Entities)
An element Entity of the Entities list is neither a variable nor an atom:

type error(atom, Entity)
Entity or an element Entity of the Entities list does not exist in the current working
directory:

existence error(entity, Entity)
Options is a variable:

instantiation error
Options is neither a variable nor a proper list:

type error(list, Options)

B.2. Built-in predicates 249

An element Option of the Options list is not valid:
type error(compiler option, Option)

Examples

| ?- logtalk_load(list, []).

| ?- logtalk_load([listp, list], [xml(off), report(on)]).

B.2.8 Flags

At runtime, the current compiler flags or options can be consulted and changed by
calling the built-in predicates current logtalk flag/2 and set logtalk flag/2. The
initial set of compiler options is read from the Logtalk configuration file.

current logtalk flag/2

Description

current_logtalk_flag(Flag, Value)

Enumerates, by backtracking, the current Logtalk flag values.

Templates and modes

current_logtalk_flag(?atom, ?atom)

Errors
Flag is neither a variable nor an atom:

type error(atom, Flag)
Flag is not a valid flag:

domain error(valid flag, Value)

Examples

| ?- current_logtalk_flag(xml, Value).

set logtalk flag/2

Description

set_logtalk_flag(Flag, Value)

Sets Logtalk flag values.

Templates and modes

set_logtalk_flag(+atom, +atom)

Errors
Flag is a variable:

instantiation error
Value is a variable:

instantiation error

250 Appendix B. Logtalk language reference

Flag is not an atom:
type error(atom, Flag)

Flag is neither a variable nor a valid flag:
domain error(valid flag, Flag)

Value is not a valid value for flag Flag:
domain error(valid flag value, Value)

Flag is a read-only flag:
domain error(read only flag, Flag)

Examples
| ?- set_logtalk_flag(xml, on).

B.2.9 Others

This is a catch-all group for some useful or common predicates.

forall/2

Description
forall(Generator, Test)

This predicate is true if Test is true for all Generator solutions (some Prolog
compilers already define this predicate or a similar predicate).

Templates and modes
forall(+callable, +callable)

Errors
Generator is not a callable term:

type error(callable, Generator)
Test is not a callable term:

type error(callable, Test)

Examples
| ?- forall(member(X, [1, 2, 3]), write(X)).

retractall/1

Description
retractall(Head)

Logtalk adds this built-in predicate, with the usual definition, to a Prolog compiler
that does not defines it.

Templates and modes
retractall(+callable)

Errors
Head is not a callable term:

type error(callable, Head)

Examples
| ?- retractall(foo(_)).

B.3. Built-in methods 251

B.3 Built-in methods

Logtalk defines a set of built-in object predicates or methods that are preprocessed by
the Logtalk compiler.

B.3.1 Local methods

Local methods are methods that can only be called inside an object, providing access
to the message execution context.

parameter/2

Description

parameter(Number, Term)

This method is used only in parametric objects. It returns parameter values by
using the parameter position in the entity identifier. Note that this predicate im-
plies an instantiation between its second argument and the corresponding implicit
context argument in the predicate containing the call. This instantiation occurs
at the clause head, not at the clause body. See also this/1.

Templates and modes

parameter(+integer, ?term)

Errors
Number is a variable:

instantiation error
Number is neither a variable nor an integer value:

type error(integer, Number)
Object identifier is not a compound term:

type error(compound, Object)
Number is a negative integer value:

domain error(not less than zero, Number)

Examples

:- object(box(_Colour)).
...
colour(Colour) :-

parameter(1, Colour).
...

...

self/1

Description

self(Self)

252 Appendix B. Logtalk language reference

This built-in method returns the object (self) which has received the message
under processing. Note that this predicate implies an instantiation between its
argument and the corresponding implicit context argument in the predicate con-
taining the call. This instantiation occurs at the clause head, not at the clause
body.

Templates and modes

self(?object_identifier)

Errors
(none)

Examples

test :-
self(Self),
write(’executing a method in behalf of ’),
writeq(Self), nl.

sender/1

Description

sender(Sender)

This built-in method returns the object (sender) which has sent the message under
processing. Note that this predicate implies an instantiation between its argument
and the corresponding implicit context argument in the predicate containing the
call. This instantiation occurs at the clause head, not at the clause body.

Templates and modes

sender(-object_identifier)

Errors
(none)

Examples

test :-
sender(Sender),
write(’executing a method to answer a message sent by ’),
writeq(Sender), nl.

this/1

Description

this(This)

B.3. Built-in methods 253

This built-in method unifies its argument with the identifier of the object con-
taining the predicate definition under execution ((this)). Note that this predicate
implies an instantiation between its argument and the corresponding implicit con-
text argument in the predicate containing the call. This instantiation occurs at
the clause head, not at the clause body. This method is useful in avoiding prob-
lems whenever an object is renamed or whenever parametric objects are used.
It can also be used to retrieve runtime parameters of parametric object though
unification (see also parameter/2).

Templates and modes

this(?object_identifier)

Errors
(none)

Examples

test :-
this(This),
write(’executing a definition contained in ’),
writeq(This), nl.

B.3.2 Reflection methods

This section describes two predicates which can be used to enumerate object predicates
and object predicate properties.

current predicate/1

Description

current_predicate(Predicate)

This built-in method enumerates, by backtracking, the visible user predicates for
an object.

Templates and modes

current_predicate(?predicate_indicator)

Errors
Predicate is neither a variable nor a valid predicate indicator:

type error(predicate indicator, Predicate)

Examples
To enumerate, by backtracking, the user predicates visible in this:

current predicate(Predicate)
To enumerate, by backtracking, the public and protected user predicates visible
in self :

::current predicate(Predicate)
To enumerate, by backtracking, the public user predicates visible for an object:

Object::current predicate(Predicate)

254 Appendix B. Logtalk language reference

predicate property/2

Description

predicate_property(Predicate, Property)

This built-in method enumerates, by backtracking, the properties of a visible pred-
icate.

Templates and modes

predicate_property(+callable, ?predicate_property)

Errors
Predicate is a variable:

instantiation error
Predicate is neither a variable nor a callable term:

type error(callable, Predicate)
Property is neither a variable nor a valid predicate property:

domain error(predicate property, Property)

Examples
To enumerate, by backtracking, the properties of a predicate visible in this:

predicate property(foo(), Property)
To enumerate, by backtracking, the properties of a public or protected predicate
visible in self :

::predicate property(foo(), Property)
To enumerate, by backtracking, the properties of a public predicate visible in an
object:

Object::predicate property(foo(), Property)

B.3.3 Database methods

The database built-in methods perform functions similar to the built-in Prolog predicates
with the same name, acting on an object instead of the whole database.

abolish/1

Description

abolish(Predicate)
abolish(Functor/Arity)

This built-in method removes a runtime declared dynamic predicate from an object
database.

Templates and modes

abolish(+predicate_indicator)

B.3. Built-in methods 255

Errors
Predicate is a variable:

instantiation error
Predicate is neither a variable nor a valid predicate indicator:

type error(predicate indicator, Predicate)
Functor is neither a variable nor an atom:

type error(atom, Functor)
Arity is neither a variable nor an integer:

type error(integer, Arity)
Predicate is statically declared:

permission error(modify, predicate declaration, Functor/Arity)
Predicate is a private predicate:

permission error(modify, private predicate, Functor/Arity)
Predicate is a protected predicate:

permission error(modify, protected predicate, Functor/Arity)
Predicate is a static predicate:

permission error(modify, static predicate, Functor/Arity)
Predicate is not declared or is declared but not in the object receiving the message::

existence error(predicate declaration, Functor/Arity)

Examples
To abolish any dynamic predicate in this:

abolish(Predicate)
To abolish a public or protected dynamic predicate in self :

::abolish(Predicate)
To abolish a public dynamic predicate in an object:

Object::abolish(Predicate)

asserta/1

Description

asserta(Clause)
asserta((Head:-Body))

This built-in method asserts a clause as the first one for an object’s dynamic
predicate. If the predicate has not yet been declared, then a dynamic predicate
declaration is added to the object.

Templates and modes

asserta(+clause)

Errors
Clause is a variable:

instantiation error
Head is a variable:

instantiation error
Head is neither a variable nor a callable term:

type error(callable, Head)

256 Appendix B. Logtalk language reference

Body cannot be converted to a goal:
type error(callable, Body)

The predicate indicator of Head is that of a private predicate:
permission error(modify, private predicate, Head)

The predicate indicator of Head is that of a protected predicate:
permission error(modify, protected predicate, Head)

The predicate indicator of Head is that of a static predicate:
permission error(modify, static predicate, Head)

Examples
To assert a clause as the first one for any dynamic predicate in this:

asserta(Clause)
To assert a clause as the first one for any public or protected dynamic predicate
in self :

::asserta(Clause)
To assert a clause as the first one for any public dynamic predicate in an object:

Object::asserta(Clause)

assertz/1

Description
assertz(Clause)
assertz((Head:-Body))

This built-in method asserts a clause as the last one for an object’s dynamic
predicate. If the predicate has not yet been declared, then a dynamic predicate
declaration is added to the object.

Templates and modes
assertz(+clause)

Errors
Clause is a variable:

instantiation error
Head is a variable:

instantiation error
Head is neither a variable nor a callable term:

type error(callable, Head)
Body cannot be converted to a goal:

type error(callable, Body)
The predicate indicator of Head is that of a private predicate:

permission error(modify, private predicate, Head)
The predicate indicator of Head is that of a protected predicate:

permission error(modify, protected predicate, Head)
The predicate indicator of Head is that of a static predicate:

permission error(modify, static predicate, Head)

Examples
To assert a clause as the last one for any dynamic predicate in this:

assertz(Clause)

B.3. Built-in methods 257

To assert a clause as the last one for any public or protected dynamic predicate
in self :

::assertz(Clause)
To assert a clause as the last one for any public dynamic predicate in an object:

Object::assertz(Clause)

clause/2

Description

clause(Head, Body)

This built-in method enumerates, by backtracking, the clauses of an object’s dy-
namic predicates.

Templates and modes

clause(+callable, ?body)

Errors
Head is a variable:

instantiation error
Head is neither a variable nor a callable term:

type error(callable, Head)
Body is neither a variable nor a callable term:

type error(callable, Body)
The predicate indicator of Head is that of a private predicate:

permission error(access, private predicate, Head)
The predicate indicator of Head is that of a protected predicate:

permission error(access, protected predicate, Head)
The predicate indicator of Head is that of a static predicate:

permission error(access, static predicate, Head)
Head is not a declared predicate:

existence error(predicate declaration, Head)

Examples
To retrieve a matching clause of any dynamic predicate in this:

clause(Head, Body)
To retrieve a matching clause of a public or protected dynamic predicate in self :

::clause(Head, Body)
To retrieve a matching clause of a public dynamic predicate in an object:

Object::clause(Head, Body)

retract/1

Description

retract(Clause)
retract((Head:-Body))

This built-in method retracts a dynamic clause from an object.

258 Appendix B. Logtalk language reference

Templates and modes

retract(+clause)

Errors
Head is a variable:

instantiation error
Head is neither a variable nor a callable term:

type error(callable, Head)
The predicate indicator of Head is that of a private predicate:

permission error(modify, private predicate, Head)
The predicate indicator of Head is that of a protected predicate:

permission error(modify, protected predicate, Head)
The predicate indicator of Head is that of a static predicate:

permission error(modify, static predicate, Head)
The predicate indicator of Head is not declared:

existence error(predicate declaration, Head)

Examples
To retract a matching clause of any dynamic predicate in this:

retract(Clause)
To retract a matching clause of a public or protected dynamic predicate in self :

::retract(Clause)
To retract a matching clause of a public dynamic predicate in an object:

Object::retract(Clause)

retractall/1

Description

retractall(Head)

This built-in method retracts all matching predicates from an object.

Templates and modes

retractall(+callable)

Errors
Head is a variable:

instantiation error
Head is neither a variable nor a callable term:

type error(callable, Head)
The predicate indicator of Head is that of a private predicate:

permission error(modify, private predicate, Head)
The predicate indicator of Head is that of a protected predicate:

permission error(modify, protected predicate, Head)
The predicate indicator of Head is that of a static predicate:

permission error(modify, static predicate, Head)
The predicate indicator of Head is not declared:

existence error(predicate declaration, Head)

B.3. Built-in methods 259

Examples
To retract all matching predicate definitions in this:

retractall(Head)
To retract all matching public or protected predicate definitions in self :

::retractall(Head)
To retract all matching public predicate definitions in an object:

Object::retractall(Head)

B.3.4 All solutions methods

This set of built-in methods act on an object database, performing similar functions to
the built-in Prolog predicates with the same name.

bagof/3

Description

bagof(Term, Goal, List)

(see the Prolog ISO standard definition)

Templates and modes

bagof(@term, +callable, -list)

Errors
(see the Prolog ISO standard)

Examples
To find all solutions in this:

bagof(Term, Goal, List)
To find all solutions in self :

bagof(Term, ::Goal, List)
To find all solutions in an object:

bagof(Term, Object::Goal, List)

findall/3

Description

findall(Term, Goal, List)

(see the Prolog ISO standard definition)

Templates and modes

findall(@term, +callable, -list)

Errors
(see the Prolog ISO standard)

260 Appendix B. Logtalk language reference

Examples
To find all solutions in this:

findall(Term, Goal, List)
To find all solutions in self :

findall(Term, ::Goal, List)
To find all solutions in an object:

findall(Term, Object::Goal, List)

forall/2

Description

forall(Generator, Test)

For all solutions of Generator, Test is true.

Templates and modes

forall(+callable, +callable)

Errors
Generator is a variable:

instantiation error
Test is a variable:

instantiation error
Generator is neither a variable nor a callable term:

type error(callable, Generator)
Test is neither a variable nor a callable term:

type error(callable, Test)

Examples
To call both goals in this:

forall(Generator, Test)
To call both goals in self :

forall(::Generator, ::Test)
To call both goals in an object:

forall(Object::Generator, Object::Test)

setof/3

Description

setof(Term, Goal, List)

(see the Prolog ISO standard definition)

Templates and modes

setof(@term, +callable, -list)

Errors
(see the Prolog ISO standard)

B.3. Built-in methods 261

Examples
To find all solutions in this:

setof(Term, Goal, List)
To find all solutions in self :

setof(Term, ::Goal, List)
To find all solutions in an object:

setof(Term, Object::Goal, List)

B.3.5 Event handler methods

Logtalk declares (but does not define) two event handler methods. Each object, acting
as a monitor, should define (or inherit definitions for) these predicates.

before/3

Description

before(Object, Message, Sender)

This is a predeclared, though user-defined, public method for handling before
events.

Templates and modes

before(?object, ?term, ?object)

Errors
(none)

Examples

before(Object, Message, Sender) :-
writeq(Object), write(’::’), writeq(Message),
write(’ from ’), writeq(Sender), nl.

after/3

Description

after(Object, Message, Sender)

This is a predeclared, though user-defined, public method for handling after events.

Templates and modes

after(?object, ?term, ?object)

Errors
(none)

Examples

after(Object, Message, Sender) :-
writeq(Object), write(’::’), writeq(Message),
write(’ from ’), writeq(Sender), nl.

262 Appendix B. Logtalk language reference

B.3.6 Definite clause grammar parsing methods

phrase/2

Description
phrase(Ruleset, Input)

Templates and modes
phrase(+callable, ?list)

True if the list Input can be parsed using the specified Ruleset.

Errors
Ruleset is a variable:

instantiation error
Ruleset is neither a variable nor a callable term:

type error(callable, Ruleset)
Input is neither a variable nor a proper list:

type error(list, Input)

Examples
(none)

phrase/3

Description
phrase(Ruleset, Input, Rest)

True if the list Input can be parsed using the specified Ruleset. The list Rest is
what remains of the list Input after parsing succeeded.

Templates and modes
phrase(+callable, ?list, ?list)

Errors
Ruleset is a variable:

instantiation error
Ruleset is neither a variable nor a callable term:

type error(callable, Ruleset)
Input is neither a variable nor a proper list:

type error(list, Input) Rest is neither a variable nor a proper list:
type error(list, Rest)

Examples
(none)

B.4 Control constructs

Logtalk adds four new control constructs to the ISO Prolog standard. These new con-
structs, described below, are used to send messages and to bypass the Logtalk prepro-
cessor.

B.4. Control constructs 263

B.4.1 Message sending

::/2

Description

Object::Predicate

(Object1, Object2, ...)::Predicate
(Object1; Object2; ...)::Predicate

Object::(Predicate1, Predicate2, ...)
Object::(Predicate1; Predicate2; ...)

This control construct implements the sending of a message to an object. The
message argument must match a public predicate of the receiver object. We can
also send the same message to a set of objects or send a set of messages to a single
object. The “,” and “;” in the list have the usual Prolog meaning.

Templates and modes

+receivers::+messages

Errors
Either Object or Predicate is a variable:

instantiation error
Predicate is declared private:

permission error(access, private predicate, Predicate)
Predicate is declared protected:

permission error(access, protected predicate, Predicate)
Predicate is not declared:

existence error(predicate declaration, Predicate)
Object does not exist:

existence error(object, Object)

Examples

| ?- list::member(X, [1, 2, 3]).

::/1

Description

::Predicate
::(Predicate1, Predicate2, ...)
::(Predicate1; Predicate2; ...)

This control construct implements the sending of a message to self. It is only used
in the body of a predicate definition. The argument should match a public or
protected predicate of self. It may also match a private predicate whenever the
predicate is imported from a category, used in a category, or is inherited using
private inheritance. We can also send a set of messages to self. The “,” and “;”
in the list have the usual Prolog meaning.

264 Appendix B. Logtalk language reference

Templates and modes

::+messages

Errors
Predicate is a variable:

instantiation error
Predicate is declared private:

permission error(access, private predicate, Predicate)
Predicate is not declared:

existence error(predicate declaration, Predicate)

Examples

area(Area) :-
::width(Width),
::height(Height),
Area is Width*Height.

^^/1

Description

^^Predicate

This control construct implements calling of a redefined/inherited definition for
a message. Usually, it is only used in the body of a predicate definition. The
predicate must match a public or protected predicate of self or be within the
scope of this.

Templates and modes

^^+message

Errors
Predicate is a variable:

instantiation error
Predicate is declared private:

permission error(access, private predicate, Predicate)
Predicate is not declared:

existence error(predicate declaration, Predicate)
Container of the inherited predicate definition is the same object that contains the
^^/1 call:

endless loop(Predicate)

Examples

init :-
assertz(counter(0)),
^^init.

B.4. Control constructs 265

B.4.2 Calling external code

{}/1

Description

{Goal}

This control construct enables calling of external Prolog code. It can be used to
bypass the Logtalk preprocessor/compiler.

Template and modes

{+callable}

Errors
(none)

Examples

N1/D1 < N2/D2 :-
{N1*D2 < N2*D1}.

Appendix C

Logtalk XML documenting files

As described in Chapter 7, the Logtalk compiler outputs a documenting file in XML
format whenever an entity is compiled. This appendix formally defines the XML doc-
umenting file format. In addition, it includes two examples on how to convert a XML
file to a more human-readable format such as HTML and PDF using XSLT.

C.1 Logtalk XML documenting files structure

Compiling a Logtalk entity outputs an XML [104] documentation file whose structure is
here formally defined using both Document Type Definition (DTD) [105] and Schema
[106] syntaxes. The corresponding logtalk.dtd and logtalk.xsd files are usually used
by XML and XSLT [107] parsers when validating and processing Logtalk XML files.

C.1.1 Logtalk XML DTD

A DTD file is the most common way of describing the structure of a XML file. This
format is supported by most XML and XSLT processors. However, it is a rather limited
format for describing the contents of elements, in particular if we want some kind of
data typing to express a range for an element contents or a list of valid content values.

<!ELEMENT logtalk (entity, relations, predicates)>

<!ELEMENT entity
(name, type, compilation,
comment?, author?, version?, date?, info*)>

<!ELEMENT name (#PCDATA)>
<!ELEMENT type (#PCDATA)>
<!ELEMENT compilation (#PCDATA)>
<!ELEMENT comment (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT version (#PCDATA)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT info (key, value)>

<!ELEMENT key (#PCDATA)>

267

268 Appendix C. Logtalk XML documenting files

<!ELEMENT value (#PCDATA)>

<!ELEMENT relations
(implements*, imports*, extends*, instantiates*, specializes*,
uses*, calls*)>

<!ELEMENT implements (name, scope, file)>
<!ELEMENT imports (name, scope, file)>
<!ELEMENT extends (name, scope, file)>
<!ELEMENT instantiates (name, scope, file)>
<!ELEMENT specializes (name, scope, file)>

<!ELEMENT uses (name, file)>
<!ELEMENT calls (name, file)>

<!ELEMENT scope (#PCDATA)>
<!ELEMENT file (#PCDATA)>

<!ELEMENT predicates (public, protected, private)>

<!ELEMENT public (predicate*)>
<!ELEMENT protected (predicate*)>
<!ELEMENT private (predicate*)>

<!ELEMENT predicate
(name, scope, compilation,
meta?, mode*, comment?, template?, info*)>

<!ELEMENT meta (#PCDATA)>

<!ELEMENT mode (template, solutions)>

<!ELEMENT template (#PCDATA)>
<!ELEMENT solutions (#PCDATA)>

C.1.2 Logtalk XML Schema

The XML Schema language is an emerging standard for describing both the structure
and the contents of XML files. Unlike the DTD format, a XML Schema is expressed
in XML, providing a much more expressive description language, which enables us to
document not only the structure but also the contents of an XML document. We take
advantage of this expressive power to define most element contents types and valid
values.

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:annotation>
<xsd:documentation>

C.1. Logtalk XML documenting files structure 269

XML Schema for Logtalk XML documentation files.
</xsd:documentation>

</xsd:annotation>

<xsd:element name="logtalk" type="logtalk"/>

<xsd:complexType name="logtalk">
<xsd:sequence>

<xsd:element name="entity"
type="entity"/>

<xsd:element name="relations"
type="relations"/>

<xsd:element name="predicates"
type="predicates"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="entity">
<xsd:sequence>

<xsd:element name="name"
type="xsd:string"/>

<xsd:element name="type"
type="type"/>

<xsd:element name="compilation"
type="compilation"/>

<xsd:element name="comment"
type="xsd:string"
minOccurs="0"/>

<xsd:element name="author"
type="xsd:string"
minOccurs="0"/>

<xsd:element name="version"
type="xsd:string"
minOccurs="0"/>

<xsd:element name="date"
type="xsd:string"
minOccurs="0"/>

<xsd:element name="info"
type="info"
minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

<xsd:simpleType name="type">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="category"/>
<xsd:enumeration value="object"/>
<xsd:enumeration value="protocol"/>

270 Appendix C. Logtalk XML documenting files

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="compilation">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="static"/>
<xsd:enumeration value="dynamic"/>

</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="info">
<xsd:sequence>

<xsd:element name="key"
type="xsd:string"/>

<xsd:element name="value"
type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="relations">
<xsd:sequence>

<xsd:element name="implements"
type="relation"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="imports"
type="relation"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="extends"
type="relation"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="instantiates"
type="relation"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="specializes"
type="relation"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="uses"
type="docrelation"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="calls"
type="docrelation"
minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="relation">
<xsd:sequence>

<xsd:element name="name"

C.1. Logtalk XML documenting files structure 271

type="xsd:string"/>
<xsd:element name="scope"

type="scope"/>
<xsd:element name="file"

type="xsd:string"/>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="docrelation">
<xsd:sequence>

<xsd:element name="name"
type="xsd:string"/>

<xsd:element name="file"
type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

<xsd:simpleType name="scope">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="public"/>
<xsd:enumeration value="protected"/>
<xsd:enumeration value="private"/>

</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="predicates">
<xsd:sequence>

<xsd:element name="public"
type="public"/>

<xsd:element name="protected"
type="protected"/>

<xsd:element name="private"
type="private"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="public">
<xsd:sequence>

<xsd:element name="predicate"
type="predicate"
minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="protected">
<xsd:sequence>

<xsd:element name="predicate"
type="predicate"

272 Appendix C. Logtalk XML documenting files

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="private">
<xsd:sequence>

<xsd:element name="predicate"
type="predicate"
minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="predicate">
<xsd:sequence>

<xsd:element name="name"
type="xsd:string"/>

<xsd:element name="scope"
type="scope"/>

<xsd:element name="compilation"
type="compilation"/>

<xsd:element name="meta"
type="xsd:string"
minOccurs="0"/>

<xsd:element name="mode"
type="mode"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="comment"
type="xsd:string"
minOccurs="0"/>

<xsd:element name="template"
type="xsd:string"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="info"
type="info"
minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="mode">
<xsd:sequence>

<xsd:element name="template"
type="xsd:string"/>

<xsd:element name="solutions"
type="solutions"/>

</xsd:sequence>
</xsd:complexType>

<xsd:simpleType name="solutions">

C.2. Example Logtalk XML documenting file 273

<xsd:restriction base="xsd:string">
<xsd:enumeration value="zero"/>
<xsd:enumeration value="zero_or_one"/>
<xsd:enumeration value="zero_or_more"/>
<xsd:enumeration value="one"/>
<xsd:enumeration value="one_or_more"/>
<xsd:enumeration value="error"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

C.2 Example Logtalk XML documenting file

This section contains an example of a Logtalk automatically generated XML docu-
menting file for a protocol named listp. This protocol contains declarations for three
common list predicates: append/3, length/2, and member/2. Here is the listing of the
listp protocol code:

:- protocol(listp).

:- info([
version is 1.0,
author is ’Paulo Moura’,
date is 2000/7/24,
comment is ’List protocol.’]).

:- public(append/3).
:- mode(append(?list, ?list, ?list), zero_or_more).
:- info(append/3, [

comment is ’Appends two lists.’,
argnames is [’List1’, ’List2’, ’List’]]).

:- public(length/2).
:- mode(length(?list, ?integer), zero_or_more).
:- info(length/2, [

comment is ’List length.’,
argnames is [’List’, ’Length’]]).

:- public(member/2).
:- mode(member(?term, ?list), zero_or_more).
:- info(member/2, [

comment is ’Element is a list member.’,
argnames is [’Element’, ’List’]]).

:- end_protocol.

Compiling this protocol generates an XML file that contains a reference to an XSLT
file (logtalk.xsl in this case) which will be used to transform the XML file in another

274 Appendix C. Logtalk XML documenting files

format (please see the next section). The name of the XSLT file is a compilation option
of the Logtalk compiler. Here is a listing of the XML documenting file:

<?xml version="1.0"?>
<!DOCTYPE logtalk SYSTEM "logtalk.dtd">
<?xml-stylesheet type="text/xsl" href="logtalk.xsl"?>

<logtalk>
<entity>

<name><![CDATA[listp]]></name>
<type>protocol</type>
<compilation>static</compilation>
<comment><![CDATA[List protocol.]]></comment>
<author><![CDATA[Paulo Moura]]></author>
<version>1.0</version>
<date>2000/7/24</date>

</entity>
<relations>
</relations>
<predicates>

<public>
<predicate>

<name><![CDATA[append/3]]></name>
<scope>public</scope>
<compilation>static</compilation>
<mode>

<template><![CDATA[append(?list, ?list, ?list)]]></template>
<solutions>zero_or_more</solutions>

</mode>
<comment><![CDATA[Appends two lists.]]></comment>
<template><![CDATA[append(List1, List2, List)]]></template>

</predicate>
<predicate>

<name><![CDATA[length/2]]></name>
<scope>public</scope>
<compilation>static</compilation>
<mode>

<template><![CDATA[length(?list, ?integer)]]></template>
<solutions>zero_or_more</solutions>

</mode>
<comment><![CDATA[List length.]]></comment>
<template><![CDATA[length(List, Length)]]></template>

</predicate>
<predicate>

<name><![CDATA[member/2]]></name>
<scope>public</scope>
<compilation>static</compilation>
<mode>

C.3. Example XSLT processing files 275

<template><![CDATA[member(?term, ?list)]]></template>
<solutions>zero_or_more</solutions>

</mode>
<comment><![CDATA[Element is a list member.]]></comment>
<template><![CDATA[member(Element, List)]]></template>

</predicate>
</public>
<protected>
</protected>
<private>
</private>

</predicates>
</logtalk>

Note the use of CDATA tags to avoid problems with user-defined text (such as predicate
names and comments) that may contain characters which otherwise would need to be
escaped to be in conformance with the XML syntax.

C.3 Example XSLT processing files

This section contains two examples of XSLT files that will transform a Logtalk XML
documenting file into nicely formatted HTML and PDF pages. These files are typically
used in shell scripts that automate the conversion and indexing of sets of documenting
files.

C.3.1 Converting documenting files to HTML

The XSLT file described here as an example, converts an XML documenting file into
nicely formatted, standards compliant, HTML file. If the documented entity contains
references to other entities, for example, inheritance relationships, the HTML file will
include links to the pages documenting the related entities. The HTML page also
contains a reference to a CSS [118] file that has not been included here. This CSS file
is used to define the final appearance of the HTML file.

<?xml version="1.0"?>
<xsl:stylesheet

version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output
method="html"
doctype-public="-//W3C//DTD HTML 4.01//EN"
doctype-system="http://www.w3.org/TR/html4/strict.dtd"/>

<xsl:template match="/">
<html>
<head>

<title><xsl:value-of select="logtalk/entity/name" /></title>
<link rel="stylesheet" href="logtalk.css" type="text/css" />

276 Appendix C. Logtalk XML documenting files

</head>
<body>

<hr />
<h4 class="type">

<xsl:value-of select="logtalk/entity/type" />
</h4>
<h1 class="code">

<xsl:value-of select="logtalk/entity/name" />
</h1>
<xsl:apply-templates select="logtalk/entity" />
<hr />
<xsl:apply-templates select="logtalk/relations" />
<hr />
<xsl:apply-templates select="logtalk/predicates" />
<hr />

</body>
</html>

</xsl:template>

<xsl:template match="logtalk/entity">
<xsl:if test="comment">

<blockquote>
<p class="blockquote"><xsl:value-of select="comment" /></p>

</blockquote>
</xsl:if>
<dl>
<xsl:if test="author">

<dt>author:</dt>
<dd><code><xsl:value-of select="author" /></code></dd>

</xsl:if>
<xsl:if test="version">

<dt>version:</dt>
<dd><code><xsl:value-of select="version" /></code></dd>

</xsl:if>
<xsl:if test="date">

<dt>date:</dt>
<dd><code><xsl:value-of select="date" /></code></dd>

</xsl:if>
</dl>
<dl>

<dt>compilation:</dt>
<dd><code><xsl:value-of select="compilation" /></code></dd>

</dl>
<xsl:if test="info">

<dl>
<xsl:for-each select="info">

<dt><xsl:value-of select="key" />:</dt>
<dd><code><xsl:value-of select="value" /></code></dd>

C.3. Example XSLT processing files 277

</xsl:for-each>
</dl>

</xsl:if>
</xsl:template>

<xsl:template match="logtalk/relations">
<xsl:choose>

<xsl:when test="*">
<xsl:if test="implements">
<dl>
<dt>implements:</dt>
<xsl:apply-templates select="implements" />

</dl>
</xsl:if>
<xsl:if test="imports">
<dl>
<dt>imports:</dt>
<xsl:apply-templates select="imports" />

</dl>
</xsl:if>
<xsl:if test="extends">
<dl>
<dt>extends:</dt>
<xsl:apply-templates select="extends" />

</dl>
</xsl:if>
<xsl:if test="instantiates">
<dl>
<dt>instantiates:</dt>
<xsl:apply-templates select="instantiates" />

</dl>
</xsl:if>
<xsl:if test="specializes">
<dl>
<dt>specializes:</dt>
<xsl:apply-templates select="specializes" />

</dl>
</xsl:if>
<xsl:if test="uses">
<dl>
<dt>uses:</dt>
<xsl:apply-templates select="uses" />

</dl>
</xsl:if>
<xsl:if test="calls">
<dl>
<dt>calls:</dt>
<xsl:apply-templates select="calls" />

278 Appendix C. Logtalk XML documenting files

</dl>
</xsl:if>

</xsl:when>
<xsl:otherwise>

<h4 class="code">(no dependencies on other files)</h4>
</xsl:otherwise>

</xsl:choose>
</xsl:template>

<xsl:template match="logtalk/relations/uses">
<dd><code>

<xsl:value-of select="name" />
</code></dd>

</xsl:template>

<xsl:template match="logtalk/relations/calls">
<dd><code>

<xsl:value-of select="name" />
</code></dd>

</xsl:template>

<xsl:template match="logtalk/relations/*">
<dd><code>

<xsl:value-of select="scope" /><xsl:text> </xsl:text>
<xsl:value-of select="name" />

</code></dd>
</xsl:template>

<xsl:template match="logtalk/predicates">
<h1>Public interface</h1>
<xsl:choose>

<xsl:when test="public/predicate">
<xsl:apply-templates select="public/predicate" />

</xsl:when>
<xsl:when test="/logtalk/relations/*">

<h4 class="code">(see related entities)</h4>
</xsl:when>
<xsl:otherwise>

<h4 class="code">(none)</h4>
</xsl:otherwise>

</xsl:choose>
<h1>Protected interface</h1>
<xsl:choose>

<xsl:when test="protected/predicate">
<xsl:apply-templates select="protected/predicate" />

</xsl:when>
<xsl:when test="/logtalk/relations/*">

<h4 class="code">(see related entities)</h4>

C.3. Example XSLT processing files 279

</xsl:when>
<xsl:otherwise>
<h4 class="code">(none)</h4>

</xsl:otherwise>
</xsl:choose>
<h1>Private predicates</h1>
<xsl:choose>

<xsl:when test="private/predicate">
<xsl:apply-templates select="private/predicate" />

</xsl:when>
<xsl:when test="/logtalk/relations/*">

<h4 class="code">(see related entities)</h4>
</xsl:when>
<xsl:otherwise>

<h4 class="code">(none)</h4>
</xsl:otherwise>

</xsl:choose>
</xsl:template>

<xsl:template match="*/predicate">
<h4 class="code"><xsl:value-of select="name" /></h4>
<xsl:if test="comment">

<blockquote><p class="blockquote">
<xsl:value-of select="comment" />

</p></blockquote>
</xsl:if>
<dl class="predicate">

<dt>compilation:</dt>
<dd><code><xsl:value-of select="compilation" /></code></dd>

<xsl:if test="template">
<dt>template:</dt>

<dd><code><xsl:value-of select="template" /></code></dd>
</xsl:if>
<xsl:if test="meta">
<dt>metapredicate template:</dt>

<dd><code><xsl:value-of select="meta" /></code></dd>
</xsl:if>
<xsl:if test="mode">
<dt>mode - number of solutions:</dt>
<xsl:for-each select="mode">

<dd><code>
<xsl:value-of select="template" />
<xsl:text> - </xsl:text>
<xsl:value-of select="solutions" />

</code></dd>
</xsl:for-each>
</xsl:if>

</dl>

280 Appendix C. Logtalk XML documenting files

<xsl:if test="info">
<dl class="predicate">

<xsl:for-each select="info">
<dt><xsl:value-of select="key" />:</dt>

<dd><code><xsl:value-of select="value" /></code></dd>
</xsl:for-each>

</dl>
</xsl:if>

</xsl:template>

</xsl:stylesheet>

C.3.2 Converting documenting files to PDF

We can also convert the Logtalk XML documenting files to a ready to print format
such as PDF using XSL Formatting Objects (XSL-FO) [107]. The XSL-FO standard is
currently a work-in-progress. Some of the applications supporting it are Apache’s FOP
processor [119], PassiveTeX TEX macros [120], and RenderX’s XEP [121]. Here is an
example stylesheet for converting a documenting file to a PDF file formatted for an A4
paper printer:

<xsl:stylesheet
version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fo="http://www.w3.org/1999/XSL/Format">

<xsl:output indent="yes"/>

<xsl:template match ="/">

<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

<fo:layout-master-set>
<fo:simple-page-master

master-name="simple"
page-height="297mm"
page-width="210mm"
margin-top="15mm"
margin-bottom="15mm"
margin-left="25mm"
margin-right="25mm">

<fo:region-body margin-top="15mm" margin-bottom="15mm"/>
<fo:region-before extent="15mm"/>
<fo:region-after extent="15mm"/>

</fo:simple-page-master>
</fo:layout-master-set>

<fo:page-sequence master-reference="simple">

C.3. Example XSLT processing files 281

<fo:static-content flow-name="xsl-region-before">
<fo:block>

<fo:leader leader-pattern="rule" leader-length="100%"/>
</fo:block>
<fo:block

text-align="end"
font-size="9pt"
font-family="sans-serif"
font-weight="bold">

<xsl:value-of select="logtalk/entity/type"/>
<xsl:text>: </xsl:text>

<xsl:value-of select="logtalk/entity/name"/>
</fo:block>

</fo:static-content>

<fo:static-content flow-name="xsl-region-after">
<fo:block>

<fo:leader leader-pattern="rule" leader-length="100%"/>
</fo:block>
<fo:block

text-align="end"
font-size="9pt"
font-family="sans-serif"
font-weight="bold">

<fo:page-number/> of <fo:page-number-citation ref-id="end"/>
</fo:block>

</fo:static-content>

<fo:flow flow-name="xsl-region-body">
<fo:block

font-size="18pt"
font-family="sans-serif"
font-weight="bold"
space-after="8pt">

<xsl:value-of select="logtalk/entity/name"/>
</fo:block>

<xsl:apply-templates select="logtalk/entity"/>
<xsl:apply-templates select="logtalk/relations"/>
<xsl:apply-templates select="logtalk/predicates"/>
<fo:block id="end"/>

</fo:flow>

</fo:page-sequence>

</fo:root>

</xsl:template>

282 Appendix C. Logtalk XML documenting files

<xsl:template match="logtalk/entity">

<xsl:if test="comment">
<fo:block

margin-left="10mm"
font-size="10pt"
font-family="serif"
font-style="italic"
space-after="8pt">

<xsl:value-of select="comment"/>
</fo:block>

</xsl:if>

<xsl:if test="author">
<fo:block

font-size="10pt"
font-family="serif"
keep-with-next="always">

author:
</fo:block>
<fo:block

font-size="9pt"
font-family="monospace"
margin-left="10mm">

<xsl:value-of select="author"/>
</fo:block>

</xsl:if>

<xsl:if test="version">
<fo:block

font-size="10pt"
font-family="serif"
keep-with-next="always">

version:
</fo:block>
<fo:block

font-size="9pt"
font-family="monospace"
margin-left="10mm">

<xsl:value-of select="version"/>
</fo:block>

</xsl:if>

<xsl:if test="date">
<fo:block

font-size="10pt"
font-family="serif"
keep-with-next="always">

C.3. Example XSLT processing files 283

date:
</fo:block>
<fo:block

font-size="9pt"
font-family="monospace"
margin-left="10mm">

<xsl:value-of select="date"/>
</fo:block>

</xsl:if>

<fo:block
font-size="10pt"
font-family="serif"
space-before="8pt"
keep-with-next="always">

compilation:
</fo:block>
<fo:block

font-size="9pt"
font-family="monospace"
margin-left="10mm"
space-after="8pt">

<xsl:value-of select="compilation"/>
</fo:block>

<xsl:if test="info">
<xsl:for-each select="info">

<fo:block
font-size="10pt"
font-family="serif"
keep-with-next="always">
<xsl:value-of select="key"/>:

</fo:block>
<fo:block

font-size="9pt"
font-family="monospace"
margin-left="10mm">

<xsl:value-of select="value"/>
</fo:block>

</xsl:for-each>
</xsl:if>

</xsl:template>

<xsl:template match="logtalk/relations">
<xsl:choose>

<xsl:when test="*">
<xsl:if test="implements">

284 Appendix C. Logtalk XML documenting files

<fo:block
font-size="10pt"
font-family="serif"
keep-with-next="always">

implements:
</fo:block>
<xsl:apply-templates select="implements"/>

</xsl:if>
<xsl:if test="imports">

<fo:block
font-size="10pt"
font-family="serif"
keep-with-next="always">

imports:
</fo:block>
<xsl:apply-templates select="imports"/>

</xsl:if>
<xsl:if test="extends">

<fo:block
font-size="10pt"
font-family="serif"
keep-with-next="always">

extends:
</fo:block>
<xsl:apply-templates select="extends"/>

</xsl:if>
<xsl:if test="instantiates">

<fo:block
font-size="10pt"
font-family="serif"
keep-with-next="always">

instantiates:
</fo:block>
<xsl:apply-templates select="instantiates"/>

</xsl:if>
<xsl:if test="specializes">

<fo:block
font-size="10pt"
font-family="serif"
keep-with-next="always">

specializes:
</fo:block>
<xsl:apply-templates select="specializes"/>

</xsl:if>
<xsl:if test="uses">

<fo:block
font-size="10pt"
font-family="serif"

C.3. Example XSLT processing files 285

keep-with-next="always">
uses:

</fo:block>
<xsl:apply-templates select="uses"/>

</xsl:if>
<xsl:if test="calls">
<fo:block

font-size="10pt"
font-family="serif"
keep-with-next="always">

calls:
</fo:block>
<xsl:apply-templates select="calls"/>

</xsl:if>
</xsl:when>
<xsl:otherwise>

<fo:block
font-size="10pt"
font-family="serif"
keep-with-next="always">

(no dependencies on other files)
</fo:block>

</xsl:otherwise>
</xsl:choose>

</xsl:template>

<xsl:template match="logtalk/relations/uses">
<fo:block

font-size="9pt"
font-family="monospace"
margin-left="10mm">

<xsl:value-of select="name"/>
</fo:block>

</xsl:template>

<xsl:template match="logtalk/relations/calls">
<fo:block

font-size="9pt"
font-family="monospace"
margin-left="10mm">

<xsl:value-of select="name"/>
</fo:block>

</xsl:template>

<xsl:template match="logtalk/relations/*">
<fo:block

font-size="9pt"
font-family="monospace"

286 Appendix C. Logtalk XML documenting files

margin-left="10mm">
<xsl:value-of select="scope"/>

<xsl:text> </xsl:text>
<xsl:value-of select="name"/>

</fo:block>
</xsl:template>

<xsl:template match="logtalk/predicates">

<fo:block
font-size="14pt"
font-family="sans-serif"
font-weight="bold"
keep-with-next="always"
space-before="18pt">

Public interface
</fo:block>
<xsl:choose>

<xsl:when test="public/predicate">
<xsl:apply-templates select="public/predicate"/>

</xsl:when>
<xsl:when test="/logtalk/relations/*">

<fo:block
font-size="10pt"
font-family="serif"
font-style="italic"
space-before="10pt">

(see related entities)
</fo:block>

</xsl:when>
<xsl:otherwise>

<fo:block
font-size="10pt"
font-family="serif"
font-style="italic"
space-before="10pt">

(none)
</fo:block>

</xsl:otherwise>
</xsl:choose>

<fo:block
font-size="14pt"
font-family="sans-serif"
font-weight="bold"
keep-with-next="always"
space-before="18pt">

Protected interface

C.3. Example XSLT processing files 287

</fo:block>
<xsl:choose>

<xsl:when test="protected/predicate">
<xsl:apply-templates select="protected/predicate"/>

</xsl:when>
<xsl:when test="/logtalk/relations/*">

<fo:block
font-size="10pt"
font-family="serif"
font-style="italic"
space-before="10pt">

(see related entities)
</fo:block>

</xsl:when>
<xsl:otherwise>

<fo:block
font-size="10pt"
font-family="serif"
font-style="italic"
space-before="10pt">

(none)
</fo:block>

</xsl:otherwise>
</xsl:choose>

<fo:block
font-size="14pt"
font-family="sans-serif"
font-weight="bold"
keep-with-next="always"
space-before="18pt">

Private predicates
</fo:block>
<xsl:choose>

<xsl:when test="private/predicate">
<xsl:apply-templates select="private/predicate"/>

</xsl:when>
<xsl:when test="/logtalk/relations/*">

<fo:block
font-size="10pt"
font-family="serif"
font-style="italic"
space-before="10pt">

(see related entities)
</fo:block>

</xsl:when>
<xsl:otherwise>

<fo:block

288 Appendix C. Logtalk XML documenting files

font-size="10pt"
font-family="serif"
font-style="italic"
space-before="10pt">

(none)
</fo:block>

</xsl:otherwise>
</xsl:choose>

</xsl:template>

<xsl:template match="*/predicate">

<fo:block
font-size="12pt"
font-family="sans-serif"
font-weight="bold"
keep-with-next="always"
space-before="10pt">

<xsl:value-of select="name"/>
</fo:block>

<xsl:if test="comment">
<fo:block

margin-left="10mm"
font-size="10pt"
font-family="serif"
font-style="italic"
space-before="4pt"
space-after="8pt">

<xsl:value-of select="comment"/>
</fo:block>

</xsl:if>

<fo:block
font-size="10pt"
font-family="serif"
keep-with-next="always">

compilation:
</fo:block>
<fo:block

font-size="9pt"
font-family="monospace"
margin-left="10mm">

<xsl:value-of select="compilation"/>
</fo:block>

<xsl:if test="template">

C.3. Example XSLT processing files 289

<fo:block
font-size="10pt"
font-family="serif"
keep-with-next="always">
template:

</fo:block>
<fo:block

font-size="9pt"
font-family="monospace"
margin-left="10mm">

<xsl:value-of select="template"/>
</fo:block>

</xsl:if>

<xsl:if test="meta">
<fo:block
font-size="10pt"
font-family="serif"
keep-with-next="always">
metapredicate template:

</fo:block>
<fo:block

font-size="9pt"
font-family="monospace"
margin-left="10mm">

<xsl:value-of select="meta"/>
</fo:block>

</xsl:if>

<xsl:if test="mode">
<fo:block
font-size="10pt"
font-family="serif"
keep-with-next="always">
mode - number of solutions:

</fo:block>
<xsl:for-each select="mode">

<fo:block
font-size="9pt"
font-family="monospace"
margin-left="10mm">

<xsl:value-of select="template"/>
<xsl:text> - </xsl:text>

<xsl:value-of select="solutions"/>
</fo:block>

</xsl:for-each>
</xsl:if>

290 Appendix C. Logtalk XML documenting files

<xsl:if test="info">
<xsl:for-each select="info">

<fo:block
font-size="10pt"
font-family="serif"
keep-with-next="always">
<xsl:value-of select="key"/>:

</fo:block>
<fo:block

font-size="9pt"
font-family="monospace"
margin-left="10mm">

<xsl:value-of select="value"/>
</fo:block>

</xsl:for-each>
</xsl:if>

</xsl:template>

</xsl:stylesheet>

Bibliography

[1] Alain Colmerauer and Philippe Roussel. The birth of Prolog, November 1992.

[2] ISO/IEC. International Standard ISO/IEC 13211-1 Information Technology —
Programming Languages — Prolog — Part I: General core. ISO/IEC, 1995.

[3] ISO/IEC. International Standard ISO/IEC 13211-2 Information Technology —
Programming Languages — Prolog — Part II: Modules. ISO/IEC, 2000.

[4] Asian Technology Information Program. ATIP98.095: Current FGCS Technol-
ogy and Activities in Japan. http://www.atip.org/public/atip.reports.98/
atip98.095.html/, November 1998.

[5] ACM/IEEE. Computer Curricula 2001: Volume II — Computer Science — Straw-
man Draft. http://www.computer.org/education/cc2001/, March 2000.

[6] ACM/IEEE. Computer Curricula 2001 — Computer Science — Final Report.
http://www.computer.org/education/cc2001/, December 2001.

[7] The Computational Logic, Implementation, and Parallelism Group, UPM, Spain.
Logic Programming and the IEEE/ACM 2001 CS Curriculum. http://www.clip.
dia.fi.upm.es/logic_programming_curr/, July 2000.

[8] Bjarne Stroustrup. The C++ Programming Language. Series in Computer Science.
Addison-Wesley, 3rd edition, 1997.

[9] Bill Joy, Guy Steele, James Gosling, and Gilad Bracha. The Java Language Spec-
ification, Second Edition. Addison-Wesley, 2000.

[10] James Noble, Antero Taivalsaari, and Ivan Moore, editors. Prototype-Based Pro-
gramming - Concepts, Languages and Applications. Springer-Verlag, 1999.

[11] James E. Rumbaugh. Relations as semantic constructs in an object-oriented lan-
guage. In Meyrowitz [122], pages 466–481.

[12] James E. Rumbaugh. Controlling propagation of operations using attributes on
relations. In Meyrowitz [123], pages 285–296.

[13] M. Fornarino, A.-M. Pinna, and B. Trousse. An original object-oriented approach
for relation management. In J. P. Martins and E. M. Morgado, editors, 4th Por-
tuguese Conference on Artificial Intelligence, volume 390 of Lecture Notes in Ar-
tificial Intelligence, pages 13–26. Springer-Verlag, September 1989.

291

http://www.atip.org/public/atip.reports.98/atip98.095.html/
http://www.atip.org/public/atip.reports.98/atip98.095.html/
http://www.computer.org/education/cc2001/
http://www.computer.org/education/cc2001/
http://www.clip.dia.fi.upm.es/logic_programming_curr/
http://www.clip.dia.fi.upm.es/logic_programming_curr/

292 Bibliography

[14] Gottfried Razek. Combining objects and relations. Comunications of the ACM,
12(27):66–70, 1992.

[15] Pattie Maes. Concepts and experiments in computational reflection. In Meyrowitz
[122], pages 147–155.

[16] A. Tanenbaum. Operating Systems — Design and Implementation. Software Se-
ries. Prentice-Hall, 1987.

[17] J. Kunz, T. P. Kehler, and M. D. Williams. Applications development using a
hybrid ai development system. AI Magazine, 5(4), 1984.

[18] Mark J. Stefik, Daniel G. Bobrow, and Ken M. Kahn. Integrating access-oriented
programming into a multiparadigm environment. IEEE Software, pages 10–18,
January 1986.

[19] Adele Goldberg and David Robson. Smalltalk-80 — The language and its imple-
mentation. Series in Computer Science. Addison-Wesley, 1983.

[20] Henry Lieberman. Using prototypical objects to implement shared behaviour in
object oriented systems. In Meyrowitz [124], pages 189–214.

[21] Brad J. Cox and Andrew Novobilski. Object-Oriented Programming: An Evolu-
tionary Approach. Addison-Wesley, 2nd edition, June 1991.

[22] David Taenzer, Murhty Ganti, and Sunil Podar. Problems in object-oriented
software reuse. In S. Cook, editor, ECOOP 89, European Conference on Object-
Oriented Programming, British Computer Society Workshop Series, pages 25–38.
Cambridge University Press, July 1989.

[23] Francis G. McCabe. Logic and Objects. Series in Computer Science. Prentice Hall,
1992.

[24] Swedish Institute for Computer Science. SICStus Prolog Home Page. http:
//www.sics.se/isl/sicstus/.

[25] Paulo Moura. Logtalk 2.6 Documentation. Technical Report DMI 2000/1, Uni-
versity of Beira Interior, Portugal, 2000.

[26] Paulo Moura. Porting Prolog: Notes on porting a Prolog program to 22 Pro-
log compilers or the relevance of the ISO Prolog standard. Assotiation of Logic
Programming Newsletter, 12(2), May 1999.

[27] Paulo Moura. Logtalk: Programação Orientada em Objectos em Prolog. In A. V.
Velho, editor, Segunda Conferência e Exposição Portuguesa de Tecnologia Orien-
tada por Objectos, pages 234–239. 3i Consultores, Lisboa, September 1994.

[28] Paulo Moura. Logtalk web site. http://www.logtalk.org/.

[29] Antero Taivalsaari. Prototype-Based Programming: Concepts, Languages and Ap-
plications, chapter Classes vs. Prototypes: Some Philosophical and Historical Ob-
servations, pages 3–16. Springer Verlag, 1999.

http://www.sics.se/isl/sicstus/
http://www.sics.se/isl/sicstus/
http://www.logtalk.org/

Bibliography 293

[30] Jacques Malenfant. Object-centered programming. In European Conference
on Object-Oriented Programming, Workshop on Prototype-Based Object-Oriented
Programming, July 1996.

[31] Henry Lieberman, Lynn Andrea Stein, and David Ungar. Object-Oriented Con-
cepts, Applications and Databases, chapter The Treaty of Orlando: A Shared View
of Sharing. Addison-Wesley, 1988.

[32] David Ungar, Henry Lieberman, Lynn Andrea Stein, and Daniel Halbert. Panel:
Treaty of orlando revisited. In Meyrowitz [123].

[33] Alan Borning. Classes versus prototypes in object-oriented languages. In Pro-
ceedings of the ACM/IEEE Fall Joint Computer Conference, pages 36–40, Dallas,
Texas, November 1986.

[34] Paulo Moura. Logtalk: Programação Orientada em Objectos em Prolog. Mas-
ter’s thesis, Departamento de Engenharia Informática, Universidade de Coimbra,
Portugal, December 1995.

[35] Peter Schachte and Georges Saab. Efficient object-oriented programming in prolog.
In Logic Programming: Formal Methods and Pratical Applications, number 11
in Studies in Computer Science and Artificial Intelligence. Elsevier Science B.V.
North-Holland, Amsterdam, 1995.

[36] Swedish Institute for Computer Science. Quintus Prolog Home Page. http://
www.sics.se/isl/quintus/.

[37] Swedish Institute for Computer Science. SICStus Prolog 3.10.1 User Manual.
Swedish Institute for Computer Science, April 2003.

[38] BinNet Corporation. Jinni — Java and Prolog software for Internet programming.
http://www.binnetcorp.com/Jinni/.

[39] BinNet Corporation. Jinni 2003 Prolog Compiler - User Guide. http://www.
binnetcorp.com/download/jinnidemo/JinniUserGuide.html.

[40] Eric Borgers. OPL User Manual. http://www.amzi.com/download/freedist_
opl.htm, 2001.

[41] Amzi! Inc. Amzi! prolog. http://www.amzi.com/.

[42] Angel Fernandez Pineda and Francisco Bueno. The O’Ciao Approach to Object
Oriented Logic Programming. In Colloquium on Implementation of Constraint
and Logic Programming Systems (ICLP associated workshop), Copenhagen, July
2002.

[43] Angel Fernandez Pineda and Manuel Hermenegildo. O’Ciao — An Object Oriented
Programming model using CIAO Prolog. Technical Report CLIP 5/99.0, The
CLIP Group, School of Computer Science, Technical University of Madrid, July
1999.

http://www.sics.se/isl/quintus/
http://www.sics.se/isl/quintus/
http://www.binnetcorp.com/Jinni/
http://www.binnetcorp.com/download/jinnidemo/JinniUserGuide.html
http://www.binnetcorp.com/download/jinnidemo/JinniUserGuide.html
http://www.amzi.com/download/freedist_opl.htm
http://www.amzi.com/download/freedist_opl.htm
http://www.amzi.com/

294 Bibliography

[44] Francisco Bueno, Daniel Cabeza, Manuel Carro, Manuel Hermenegildo, Pedro
López, and Germán Puebla. The Ciao Prolog System. Technical Report CLIP
3/97.1, The CLIP Group, School of Computer Science, Technical University of
Madrid, December 2002.

[45] Computational Logic, Implementation, and Parallelism Lab. The Ciao Prolog
Development System WWW Site. http://www.clip.dia.fi.upm.es/Software/
Ciao/index.html.

[46] IF Computer GmbH. Minerva: Prolog in java. http://www.ifcomputer.com/
MINERVA/.

[47] Chris Moss. Prolog++ The Power of Object-Oriented and Logic Programming.
Series in Logic Programming. Addison-Wesley, 1994.

[48] Dave Westwood. Prolog++ Reference, 1995.

[49] Logic Programming Associates Ltd. LPA Home Page. http://www.lpa.co.uk/.

[50] Salvador Abreu. ISCO: A practical language for heterogeneous information system
construction. In Proceedings of 14th International Conference of Applications of
Prolog, pages 107–119, Tokyo, Japan, October 2001.

[51] Anjo Anjewierden and Jan Wielemaker. Xpce: the swi-prolog native gui library.
http://www.swi-prolog.org/packages/xpce/.

[52] Markus Fromherz. OL(P): Object Layer for Prolog. ftp://parcftp.xerox.com/
ftp/pub/ol/.

[53] Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley, 1st edi-
tion, 1994.

[54] Dan G. Bobrow, Linda G. Michiel, Richard P. Gabriel, Sonya E. Keene, Gregor
Kiczale, and David A. Moon. Common lisp object system specification. SIGPLAN
Notices, 23, 1988.

[55] Iain Craig. The Interpretation of Object-Oriented Programming Languages.
Springer Verlag, December 1999.

[56] Yen-Ping Shan, Thomas A. Cargill, Brad Cox, William Cook, Mary Loomis, and
Alan Snyder. Is multiple inheritance essential to OOP? (panel). In Andreas
Paepcke, editor, OOPLSLA 93, ACM Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, volume 28 of SIGPLAN Notices,
pages 360–363. ACM Press, October 1993.

[57] Pierre Cointe. Metaclasses are first class: the ObjVlisp model. In Meyrowitz [122],
pages 156–167.

[58] William F. Clocksin and Christopher S. Mellish. Programming in Prolog. Springer-
Verlag, New York, 1987.

[59] Christophe Dony, Jaques Malenfant, and Daniel Bardau. Prototype-Based Pro-
gramming: Concepts, Languages and Applications, chapter Classifying Prototype-
based Programming Languages, pages 17–45. Springer Verlag, 1999.

http://www.clip.dia.fi.upm.es/Software/Ciao/index.html
http://www.clip.dia.fi.upm.es/Software/Ciao/index.html
http://www.ifcomputer.com/MINERVA/
http://www.ifcomputer.com/MINERVA/
http://www.lpa.co.uk/
http://www.swi-prolog.org/packages/xpce/
ftp://parcftp.xerox.com/ftp/pub/ol/
ftp://parcftp.xerox.com/ftp/pub/ol/

Bibliography 295

[60] David Ungar and Randall B. Smith. Self: The power of simplicity. Lisp And
Symbolic Computation, 4(3), 1991.

[61] D.L. Bowen, L. Byrd, F. C. N. Pereira, L. M. Pereira, and D. H. D. Warren.
DEC-10 Prolog Users Manual. Department of Artificial Intelligence, University of
Edinburgh, November 1982.

[62] David H. D. Warren. Implementing Prolog - Compiling Predicate Logic Programs.
Technical Report 39 and 40, Department of Artificial Intelligence, University of
Edinburgh, 1977.

[63] IC-Parc. The ECLiPSe Constraint Logic Programming System. http://www.
icparc.ic.ac.uk/eclipse/.

[64] The XSB Research Group. XSB Home Page. http://xsb.sourceforge.net/.

[65] Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The implementation of
Mercury: an efficient purely declarative logic programming language. In Proceed-
ings of the ILPS’94 Postconference Workshop on Implementation Techniques for
Logic Programming Languages, Syracuse, New York, November 1994.

[66] University of Melbourne. The Mercury Project: Introduction. http://www.cs.
mu.oz.au/research/mercury/.

[67] Fergus Henderson, Thomas Conway, Zoltan Somogyi, David Jeffery, Peter
Schachte, Simon Taylor, and Chris Speirs. Mercury Language Reference Man-
ual. The Mercury Project.

[68] Vitor Santos Costa. YAP Home Page. http://www.cos.ufrj.br/~vitor/Yap/.

[69] Jan Wielemaker. SWI-Prolog Home Page. http://www.swi-prolog.org/.

[70] BinNet Corporation. BinProlog Home Page. http://www.binnetcorp.com/
BinProlog/.

[71] Swedish Institute for Computer Science. SICStus Prolog Manual. http://www.
sics.se/isl/sicstus.html.

[72] Fernando C. N. Pereira and David H. D. Warren. Definite clause grammars for
language analysis — a survey of the formalism and a comparison with augmented
transition networks. Artificial Intelligence, 13:231–278, 1980.

[73] Jonathan Hodgson. ISO/IEC/ JTC1/SC22/WG17 official home page. http:
//www.sju.edu/~jhodgson/wg17/wg17web.html.

[74] Anthony Dodd. Definite Clause Grammars (DCGs) in ISO Prolog — a proposal.
http://www.sju.edu/~jhodgson/wg17/d895.ps, September 1992.

[75] ObjectShare, Inc. VisualWorks Application Developer’s Guide, VisualWorks Soft-
ware Release 3.0, 1998.

[76] ObjectShare, Inc. Objectshare web site. http://www.objectshare.com/.

http://www.icparc.ic.ac.uk/eclipse/
http://www.icparc.ic.ac.uk/eclipse/
http://xsb.sourceforge.net/
http://www.cs.mu.oz.au/research/mercury/
http://www.cs.mu.oz.au/research/mercury/
http://www.cos.ufrj.br/~vitor/Yap/
http://www.swi-prolog.org/
http://www.binnetcorp.com/BinProlog/
http://www.binnetcorp.com/BinProlog/
http://www.sics.se/isl/sicstus.html
http://www.sics.se/isl/sicstus.html
http://www.sju.edu/~jhodgson/wg17/wg17web.html
http://www.sju.edu/~jhodgson/wg17/wg17web.html
http://www.sju.edu/~jhodgson/wg17/d895.ps
http://www.objectshare.com/

296 Bibliography

[77] Apple Computer, Inc. The Objective-C language. http://developer.apple.
com/techpubs/index.html, May 2002.

[78] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. Back to the
future – the story of Squeak, a practical Smalltalk written in itself. In OOPLSLA
97, ACM Conference on Object-Oriented Programming Systems, Languages, and
Applications, volume 21 of SIGPLAN Notices, pages 318–326. ACM Press, October
1997.

[79] Squeak.org. Squeak home page. http://www.squeak.org/.

[80] Sun Microsystems, Inc. Javasoft web site. http://www.javasoft.com/.

[81] Apple Computer, Inc. Apple Computer Technical Documentation: MacOS X
Server — Foundation Framework Classes, 1999.

[82] William R. Cook. Interfaces and specifications for the Smalltalk-80 collection
classes. In Andreas Paepcke, editor, OOPLSLA 92, ACM Conference on Object-
Oriented Programming Systems, Languages, and Applications, volume 27 of SIG-
PLAN Notices, pages 1–15. ACM Press, October 1992.

[83] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton. N degrees of
separation: Multi-dimensional separation of concerns. In International Conference
on Software Engineering, pages 107–119, May 1999.

[84] David A. Moon. Object-oriented programming in Flavors. In Meyrowitz [124],
pages 1–8.

[85] Guy L. Steele. Common LISP: The Language. Digital Press, Bedford, Mas-
sachusetts, 1984.

[86] Gilad Bracha and William Cock. Mixin-based inheritance. In Norman Mey-
rowitz, editor, OOPLSLA 90, ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications, volume 25 of SIGPLAN Notices, pages
303–311. ACM Press, October 1990.

[87] Yukihiro Matsumoto. Ruby home page. http://www.ruby-lang.org/en/.

[88] David Thomas and Andrew Hunt. Programming Ruby: The Pragmatic Program-
mer’s Guide. Addison-Wesley Longman, 2001.

[89] Yukihiro Matsumoto. Ruby in a Nutshell. O’Reilly, November 2001.

[90] Yukihiro Matsumoto. Ruby Programmers Reference Guide, 2000.

[91] Randall B. Smith and David Ungar. Programming as an experience: The in-
spiration of Self. In W. Olthoff, editor, ECOOP 95, European Conference on
Object-Oriented Programming, volume 952 of Lecture Notes in Computer Science,
pages 303–330, Aarhus, Denmark, August 1995. Springer-Verlag.

[92] Gregor Kiczales, John Irwin, John Lamping, Jean-Marc Loingtier, Cristina Videira
Lopes, Chris Maeda, and Anurag Mendhekar. Aspect-oriented programming. In
Mehmet Aksit and Satoshi Matsuoka, editors, ECOOP 97, European Conference
on Object-Oriented Programming, volume 1241 of Lecture Notes in Computer Sci-
ence, pages 220–242, Jyvaskyla, Finland, June 1997. Springer-Verlag.

http://developer.apple.com/techpubs/index.html
http://developer.apple.com/techpubs/index.html
http://www.squeak.org/
http://www.javasoft.com/
http://www.ruby-lang.org/en/

Bibliography 297

[93] Harold Ossher, Matthew Kaplan, Alexander Katz, William Harrison, and Vincent
Kruskal. Specifying Subject-Oriented Composition, Theory and Practice of Object
Systems, volume 2. Wiley & Sons, 1996.

[94] Ralph Keller and Urs Hölzle. Binary component adaptation. In Eric Jul, editor,
ECOOP 98, European Conference on Object-Oriented Programming, volume 1445
of Lecture Notes in Computer Science, pages 307–329, Brussels, Belgium, July
1998. Springer-Verlag.

[95] J. Malenfant, M. Jaques, and F.-N. Demers. A tutorial on behavioral reflection
and its implementation. In Gregor Kiczales, editor, Reflection 96 Conference,
pages 1–20, April 1996.

[96] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns
— Elements of Reusable Object-Oriented Software. Professional Computing Series.
Addison-Wesley, 1995.

[97] Sun Microsystems, Inc. Java 2 Platform, Standard Edition, v 1.4.1 API Specifi-
cation. http://java.sun.com/j2se/1.4.1/docs/api.

[98] Donald E. Knuth. The literate programming paradigm. Computer Journal,
27(2):97–111, May 1984.

[99] Lisa Friendly. The design of distributed hyperlinked programming documentation.
In International Workshop on Hypermedia Design ’95, 1995.

[100] Computational Logic, Implementation, and Parallelism Lab. The lpdoc Documen-
tation Generator. http://www.clip.dia.fi.upm.es/Software/Ciao/index.
html.

[101] Donald E. Knuth and Silvio Levy. The CWEB System of Structured Documenta-
tion, January 2001.

[102] World Wide Web Consortium. Hypertext Markup Language (html). http://www.
w3.org/MarkUp/.

[103] LaTeX3 Project. Latex project home page. http://www.latex-project.org/.

[104] World Wide Web Consortium. Extensible Markup Language (xml). http://www.
w3.org/XML/.

[105] Simon St. Laurent and Robert J. Biggar. Inside XML DTDs: Scientific and
Technical. McGraw-Hill, 1999.

[106] World Wide Web Consortium. W3C XML Schema. http://www.w3.org/XML/
Schema.

[107] World Wide Web Consortium. Extensible Stylesheet Language (xsl). http://
www.w3.org/Style/XSL/.

[108] Adobe Systems Incorporated. PDF Reference — Adobe Portable Document For-
mat Version 1.4. Addison-Wesley, 3rd edition, 2000.

http://java.sun.com/j2se/1.4.1/docs/api
http://www.clip.dia.fi.upm.es/Software/Ciao/index.html
http://www.clip.dia.fi.upm.es/Software/Ciao/index.html
http://www.w3.org/MarkUp/
http://www.w3.org/MarkUp/
http://www.latex-project.org/
http://www.w3.org/XML/
http://www.w3.org/XML/
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema
http://www.w3.org/Style/XSL/
http://www.w3.org/Style/XSL/

298 Bibliography

[109] World Wide Web Consortium. Extensible HyperText Markup Language
(XHTML). http://www.w3.org/MarkUp/.

[110] OpenSource.Org. Open Source Initiative OSI - The Artistic License:Licensing.
http://www.opensource.org/licenses/artistic-license.php.

[111] Daniel Diaz. The GNU Prolog web site. http://gprolog.inria.fr/.

[112] Pierre Deransart and AbdelAli Ed-Dbali. Executable specification for Standard
Prolog version 1.0. ftp://ftp-lifo.univ-orleans.fr/pub/Users/eddbali/
SdProlog/.

[113] Jonanthan Hodgson. Validation suite of tests for ISO standard conformance. http:
//www.sju.edu/~jhodgson/x3j17.html.

[114] Pierre Deransart, AbdelAli Ed-Dbali, and Laurent Cervoni. Prolog: The Standard.
Springer-Verlag, 1996.

[115] Open Source Development Network. freshmeat.net. http://freshmeat.net/.

[116] British Standards Institute. British Standard 6154 — Method of defining — Syn-
tactic meta-language. British Standards Institute, 1981.

[117] Roger Scowen. An Introduction and Handbook for the Standard Syntactic Meta-
language. Technical Report DITC 19/8, National Physical Laboratory, 1983.

[118] World Wide Web Consortium. Cascading Style Sheets (css). http://www.w3.
org/Style/CSS/.

[119] The Apache XML Project. FOP. http://xml.apache.org/fop.

[120] Sebastian Rahtz. PassiveTeX. http://www.tei-c.org.uk/Software/
passivetex/.

[121] RenderX Corporation. RenderX. http://www.renderx.com.

[122] Norman Meyrowitz, editor. OOPLSLA 87, ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications, volume 22 of SIGPLAN No-
tices. ACM Press, October 1987.

[123] Norman Meyrowitz, editor. OOPLSLA 88, ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications, volume 23 of SIGPLAN No-
tices. ACM Press, November 1988.

[124] Norman Meyrowitz, editor. OOPLSLA 86, ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications, volume 21 of SIGPLAN No-
tices. ACM Press, 1986.

http://www.w3.org/MarkUp/
http://www.opensource.org/licenses/artistic-license.php
http://gprolog.inria.fr/
ftp://ftp-lifo.univ-orleans.fr/pub/Users/eddbali/SdProlog/
ftp://ftp-lifo.univ-orleans.fr/pub/Users/eddbali/SdProlog/
http://www.sju.edu/~jhodgson/x3j17.html
http://www.sju.edu/~jhodgson/x3j17.html
http://freshmeat.net/
http://www.w3.org/Style/CSS/
http://www.w3.org/Style/CSS/
http://xml.apache.org/fop
http://www.tei-c.org.uk/Software/passivetex/
http://www.tei-c.org.uk/Software/passivetex/
http://www.renderx.com

Index

:- calls/1, 24, 111, 154, 221
:- category/1-2, 109, 206, 222
:- discontiguous/1, 64, 229
:- dynamic/1, 64, 230
:- dynamic/0, 24, 98, 111, 222
:- end category/0, 109, 206, 222
:- end object/0, 18, 205, 223
:- end protocol/0, 94, 207, 223
:- info/1, 25, 98, 111, 153, 223
:- info/2, 65, 154, 216, 230
:- initialization/1, 23, 98, 110, 224
:- metapredicate/1, 59, 216, 230
:- mode/2, 57, 215, 231
:- object/1-5, 18, 205, 224
:- op/3, 231
:- private/1, 56, 214, 231
:- protected/1, 56, 214, 232
:- protocol/1-2, 94, 207, 228
:- public/1, 56, 214, 232
:- uses/1, 24, 111, 154, 229
::/1, 49, 217, 261
::/2, 48, 217, 261
{}/1, 50, 217, 263
^^/1, 50, 217, 262

abolish/1, 74, 252
abolish category/1, 110, 237
abolish events/5, 140, 242
abolish object/1, 23, 237
abolish protocol/1, 98, 238
after/3, 138, 259
asserta/1, 74, 253
assertz/1, 74, 254

bagof/3, 81, 257
before/3, 138, 259

category
directives, 213
identifiers, 212

category property/2, 114, 234

class
abstract class, 10, 43
definition, 10
instance, 11
metaclass, 11, 43
subclass, 10
superclass, 11

clause/2, 74, 255
closed-world assumption, 53, 93
compiler

configuration file, 160
create category/4, 109, 235
create object/4, 22, 236
create protocol/3, 97, 236
current category/1, 113, 233
current event/5, 140, 243
current logtalk flag/2, 163, 247
current object/1, 25, 233
current predicate/1, 78, 251
current protocol/1, 100, 233

define events/5, 140, 243
directive

entity, see entity directives
predicate, see predicate directives

entity
directives, 213
functors clause, 170
identifiers, 211
linking clauses, 169, 175
prefix, 168
properties, 219
relation scope, 210

event
after, 137
before, 137
handlers, 137

extends object/2-3, 25, 67, 238
extends protocol/2-3, 100, 239

299

300 Index

findall/3, 81, 257
forall/2, 81, 248, 258

implements protocol/2-3, 101, 113, 240
imports category/2-3, 114, 240
inheritance

private, 66
protected, 66
public, 66
selective, 70
specialization, 68
union, 69

instantiates class/2-3, 26, 67, 241

logtalk compile/1-2, 163, 244
logtalk load/1-2, 163, 245, 246

message
dynamic binding, 52, 161
static binding, 52

method
built-in, 72
class, 85
execution context, 72, 172
instance, 82
instance-defined, 82

object
ancestor, 11
definition, 10
directives, 213
identifiers, 211
parametric, 10

object property/2, 26, 234

parameter/2, 72, 249
phrase/2-3, 81, 260
predicate

declaration, 55
directives, 214
dynamic declaration, 74
dynamic declaration table, 171
dynamic definition table, 173
local, 56
metapredicate, 56
prefix, 172
private, 56
properties, 79, 219
protected, 56

public, 56
scope, 56
static declaration, 74
static declaration table, 171
static definition table, 173
visible, 56

predicate property/2, 78, 252
protocol

directives, 213
identifiers, 212

protocol property/2, 101, 235
prototype

definition, 11
parent, 11

reflection
behavioral, 133
database view, 78
protocol view, 78
structural, 133

retract/1, 74, 255
retractall/1, 74, 248, 256

scope container, 176
self, 52
self/1, 72, 249
sender, 52
sender/1, 72, 250
set logtalk flag/2, 163, 247
setof/3, 81, 258
specializes class/2-3, 26, 67, 241

this, 52
this/1, 72, 250
true container, 176

	Acknowledgements
	Abstract
	Extended abstract in Portuguese
	Preface
	Contents
	Introduction
	Goals
	Scientific goals
	Technical goals

	Work methodology
	Reader background
	Thesis outline

	Objects
	Logtalk object concept
	Object-oriented concepts
	Objects, classes, and prototypes
	Logtalk as a neutral, unbiased object-oriented language

	Related work
	Prolog object-oriented extensions
	Why developing Logtalk?
	Prolog module systems

	Working with objects
	Defining a new object
	Defining object hierarchies
	Inheritance
	Creating a new object at runtime
	Abolishing dynamic objects
	Object directives

	The pseudo-object user
	Finding about objects
	Finding defined objects
	Object relations
	Object properties

	Examples
	Towers of Hanoi
	A reflective class-based system
	Geometric shapes

	Parametric objects
	Related work
	Accessing object parameters
	Parameter passing
	Examples

	Logtalk as a prototype language
	Object representation
	Object creation and evolution
	Inheritance and life-time sharing between objects
	Extensions, delegation and sharing

	Logtalk as a class-based language
	Definition of classes and instances
	Methods and variables
	Class interfaces
	Component-based programming
	Class hierarchies
	Metaclasses
	Abstract classes

	Summary

	Control constructs
	Message sending
	Message sending operators
	Messages to objects
	Broadcasting
	Messages to self
	Calling redefined predicates

	Calling external code
	Control constructs and metapredicates as messages
	Message processing
	Execution context
	Closed-world assumption
	Exception handling

	Message delegation
	Summary

	Predicates
	Predicate declarations
	Definitions
	Scope directives
	Mode directive
	Metapredicate directive
	Discontiguous directive
	Dynamic directive
	Documenting directive
	Redeclaration of inherited predicates

	Predicate definitions
	Redefinition of inherited predicates
	Public, protected, and private inheritance
	Overriding inherited predicate definitions
	Specializing inherited predicate definitions

	Definite clause grammars
	Built-in methods
	Execution context methods
	Database methods
	Reflection methods
	All solution methods
	Event handler methods
	Definite clause grammar parsing methods

	Built-in predicates
	Representing object state and behavior
	Instance methods
	Class methods
	Instance variables
	Class variables
	Property sharing versus value sharing

	Summary

	Protocols
	Logtalk protocol concept
	Related work

	Working with protocols
	Defining a new protocol
	Protocol hierarchies
	Creating a new protocol at runtime
	Abolishing dynamic protocols
	Protocol directives
	Implementing protocols

	Finding about protocols
	Finding defined protocols
	Protocol relations
	Protocol properties

	Summary

	Categories
	Code reusing
	Inheritance-based reusing
	Object variable-based composition reusing
	Category-based reusing

	Logtalk category concept
	Category properties
	Implementation

	Related work
	Mixins
	Smalltalk categories
	Objective-C categories
	Ruby modules
	Prototype languages

	Working with categories
	Defining a new category
	Creating a new category at runtime
	Abolishing dynamic categories
	Category directives
	Importing categories
	Handling dynamic predicates

	Finding about categories
	Finding defined categories
	Category relations
	Category properties

	Examples
	Composing definite clause grammars
	Splitting an object in categories
	Categories as a complementary composition tool
	Hierarchy relations
	Monitoring category
	Points

	Summary

	Events
	Events and monitors as language primitives
	Event definition
	Monitor definition
	Event registration
	Event-driven programming
	Related work

	Message sending and event generation
	Communicating events to monitors
	Defining event handlers
	Event handler semantics
	Activation order of event handlers

	Event registration
	Defining new events
	Abolishing defined events
	Finding defined events

	Examples
	Tracing messages
	Profiling
	Constrained object relations: a stack of blocks

	Summary

	Documenting Logtalk programs
	Documenting language
	Documenting file format
	Documenting directives
	Entity documenting directives
	Predicate documenting directives

	Processing and viewing documenting files
	Summary

	Implementation
	Design choices
	Logtalk as a Prolog preprocessor
	Compatibility and portability
	Dynamic binding
	Static relations between entities
	Independent entity compilation
	No predefined entities
	One entity per source file
	Distribution and use license

	Implementation overview
	Compiling and loading source files
	Compiler options
	Compiler and runtime error handling
	Parsing and translating source files

	Identifiers, prefixes, functors, and tables
	Entity prefix
	Entity tables
	Predicate tables
	Linking clauses
	Entity functors clause

	Compiling predicate directives
	Static table of predicate declarations
	Dynamic table of predicate declarations

	Compiling predicate clauses
	Compiling clause heads
	Predicate definition tables
	Compiling clause bodies

	Compiling entity relations
	Compiling protocol relations
	Compiling category relations
	Compiling prototype relations
	Compiling instantiation and specialization relations
	Compiling protected and private relations

	Runtime support for events and monitors
	Limitations
	Prolog-related limitations
	Operating system-related limitations

	Porting
	Porting results
	Porting reliability
	Porting issues

	Summary

	Conclusions
	Logtalk as a Prolog object-oriented extension
	Logtalk compatibility
	Logtalk syntax
	The role of objects in logic programming
	Implementation solutions for object-oriented concepts
	Objects as a replacement for modules
	Working environment and other practical matters

	Logtalk as an object-oriented programming language
	Predicates as both variables and methods
	Static and dynamic language elements
	Support for both prototypes and classes

	Event-driven programming
	Category-based composition
	Reflection
	Program documentation
	Logtalk in the classroom
	Logtalk in numbers
	Future work

	Logtalk Grammar
	Entity types
	Entity definitions
	Object definition
	Category definition
	Protocol definition

	Entity relations
	Implemented protocols
	Extended protocols
	Imported categories
	Extended objects
	Instantiated objects
	Specialized objects
	Entity relation scope

	Entity identifiers
	Object identifiers
	Category identifiers
	Protocol identifiers

	Directives
	Entity directives
	Predicate directives

	Clauses and goals
	Clauses
	Goals

	Entity properties
	Predicate properties

	Logtalk language reference
	Directives
	Entity directives
	Predicate directives

	Built-in predicates
	Enumerating entities
	Enumerating entity properties
	Creating new entities
	Abolishing entities
	Entity relations
	Event handling
	Compiling and loading entities
	Flags
	Others

	Built-in methods
	Local methods
	Reflection methods
	Database methods
	All solutions methods
	Event handler methods
	Definite clause grammar parsing methods

	Control constructs
	Message sending
	Calling external code

	Logtalk XML documenting files
	Logtalk XML documenting files structure
	Logtalk XML DTD
	Logtalk XML Schema

	Example Logtalk XML documenting file
	Example XSLT processing files
	Converting documenting files to HTML
	Converting documenting files to PDF

	Bibliography
	Index

